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Preface 

This book covers a number of more advanced (or esoteric) language and library topics.  

Reader Assumptions 

To fully understand and exploit the material, you should be conversant with the information presented in the 

companion volume, “Programming in C”, and preferably have more than a little experience in actually writing 

C code. The main topics covered by that volume are: 

• Formatted I/O using printf and scanf 

• Built-in data types 

• Literals and identifiers 

• The type qualifier const 

• Type synonyms 

• Automatic and static storage durations 

• The operators, their precedence, and order of evaluation 

• Type conversion 

• All the statements 

• Arrays and strings 

• Functions 

• The preprocessor 

• Basic data pointer use 

• Dynamic memory allocation 

• Structures, bit-Fields, and unions 

• Implementation-defined behavior 

and any associated library headers and functions. 

Limitations 

GUI, calling non-C routines, inter-process communications, and operating system-specific features are outside the 

scope of this text. 

Presentation Style 

The approach used in this book is different from that used in many other books and training courses. Having 

developed and delivered programming language training for more than 20 years, I have found that the best 

approach for my students is an incremental one. I avoid introducing things that are unnecessary at any given time, 

thus making examples small, simple, and focused. Many books use GUI and numerous non-trivial library facilities 

in the first few examples, and certainly in the first chapter. I do not care for this approach, either as a reader or as 

an educator. Instead, I prefer the student to have an excellent chance of understanding and absorbing small 

amounts of new material, and reinforcing it with lab sessions, as they progress. The intent here is to eliminate any 

chance of their being overwhelmed, provided, of course, they meet the prerequisites. 
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Different styles work for different teachers and different students. I do not suggest that my approach is better 

than is any other; I simply know that my approach works well, and has formed the basis of my successful seminar 

business. 

Exercises and Solutions 

The programs shown in the text are available electronically in a directory tree named Source, where each 

chapter has its own subdirectory, within which each program may well have its own subdirectory. For example, 

the source code for the program called in01 in the "Internationalization" chapter can be found in the following 

directory hierarchy: Source, Internationalization, in01. By convention, the names of C source files end in “.c”. 

Each chapter contains exercises, some of which have the character * following their number. For each exercise so 

marked, a solution is provided electronically in a directory tree named Labs, where each chapter has its own 

subdirectory, within which each program has its own subdirectory.1   For example, lab solution lbco02 in the 

"Comma Operator" chapter has the following fully qualified directory hierarchy: Labs, CommaOperator, lbco02. 

Exercises that are not so marked have no general solution and may require experimentation or research in an 

implementation's documentation. 

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your 

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler 

gives you each error or why a program fails at run time. 

The Status of Standard C 

The history of the standardization of C is as follows: 

• C89 – The first ANSI C standard, ANSI X3.159-1989, was produced in 1989 by the U.S. committee X3J11. 

• C90 – The first ISO C standard, ISO/IEC 9899:1990, was produced in 1990 by committee ISO/IEC 

JTC 1/SC 22/WG 14 in conjunction with committee X3J11. C90 was technically equivalent to C89. 

• C95 – An amendment to C90 was produced in 1995 by committee WG 14 in conjunction with the U.S. 

committee X3J11. The additions included digraphs, the header iso646.h, and many multibyte and wide-

character functions via the headers wchar.h and wctype.h. 

• C99 – The second edition of the ISO C standard, ISO/IEC 9899:1999, was produced by committee WG14 in 

conjunction with the U.S. committee INCITS/J11 (formerly X3J11). The additions included a few language 

features, a number of headers, and many library functions. Throughout its development, C99 was 

commonly referred to as C9x. 

• C11 – The third edition of the ISO C standard, ISO/IEC 9899:2011, was produced by committee WG14 in 

conjunction with the U.S. committee INCITS/PL22.11 (formerly INCITS/J11). The additions included 

support for multiple threads of execution, processing Unicode characters and strings, and the querying 

and specification of the alignment of objects, among other things. 

• C17 – The fourth edition of the ISO C standard, ISO/IEC 9899:2017, was produced by committee WG14 in 

conjunction with the U.S. committee INCITS/PL22.11. This was a maintenance release that included 

corrections to Defect Reports. No new functionality was added. 

The C standards committee is currently working on various maintenance issues and informative Technical Reports. 

Electronic copies of the latest C standard can be purchased from www.ansi.org or www.iso.ch. 

                                                           

1 The solutions are only available to licensees of these materials when they are used in formal training scenarios. 
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An example containing one of each is: 

int i;          /* basic type,    int                   */ 

int a[10];      /* derived type, array of 10 int        */ 

int f(void);    /* derived type, function returning int */ 

int *pi;        /* derived type, pointer to int         */ 

The simple rule to remember here involves the position of the derived type punctuation in the declarator.  In the 

case of arrays and functions, the [] and () are postfix punctuators; that is, they follow immediately after the 

identifier to which they apply.  The pointer notation * is a prefix punctuator, so it comes immediately before the 

identifier to which it applies. 

3.4 Deriving from a Derived Type 

Since a derived type is derived from another type, it follows that we can derive a type from another derived type, 

which in turn was derived from another type, ad infinitum.  Some simple examples follow: 

char **ppc;             /* ppc is a ptr to a ptr to a char           */ 

 

char ***pppc;           /* pppc is a ptr to a ptr to a ptr to a char */ 

 

long table[10][5];      /* table is an array of 10 elements each of  */ 
                        /* which is an array of 5 elements each of   */ 

                        /* which is a long                           */ 

 

long counts[5][4][6];   /* counts is an array of 5 elements each of  */ 

                        /* which is an array of 4 elements each of   */ 

                        /* which is an array of 6 elements each of   */ 
                        /* which is a long                           */ 

All derived types ultimately come down to a basic type, as well they must, since the basic types are the only ones 

for which we have keywords. 

In the case of a pointer declarator, * is a prefix punctuator so we simply add an extra * in front of a valid type 

declarator until we get the desired level of indirection.  With arrays, the situation is very similar except that [] is a 

postfix punctuator and is added to the end of the type declarator we wish to modify.  This gives rise to the notion 

of a multidimensional array being an array each of whose elements is an array, and so on, until the final 

dimension array contains either objects of a basic or derived type. 

In the declarations above, we have derived a type using the same punctuator multiple times.  We have omitted 

the () punctuator since it cannot be applied to itself; that is, a function cannot return another function. We can 

combine these three punctuators giving rise to other possibilities; however, not all such combinations are valid.  

Two valid combinations are: 

char *keywords[10];     /* keywords is an array of 10 elements each of */ 

                        /* which is a ptr to a char                    */ 

 
double *test(void);     /* test is a function returning a ptr to double */ 
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We can derive in three ways from a derived type, which was, itself, derived in one of three ways, giving nine 

possible combinations.  They are: 

Table 3-1: Valid Derived Type Combinations 

Derived type/"Basic type" Pointer Array Function 

Pointer to valid valid valid 

Array of valid valid invalid 

Function returning valid invalid invalid 

 

Reproducing this table at will is easy: The three “invalids” should be obvious; a function cannot return an array or 

function, and we cannot have an array of functions. All other entries are “valid”. The only unusual “valid” is 

pointer to array.1 

3.5 Precedence of Punctuators 

Once a declarator contains more than one occurrence of the three punctuators [], (), and *, we need to be 

concerned about the order in which they apply to the identifier.  For example, does char *keywords[10] 

declare keywords to be an array of 10 pointers to char or a pointer to an array of 10 char? According to the 

table above, both are possible, so which is it, and how do we write the other? 

It is no coincidence that these punctuators are also used as operators in an identical context.  Consider the 

following example: 

void f() 

{ 

/*1*/   char *keywords[10]; 

        char c; 

 

/*2*/   c = *keywords[0]; 
} 

Given the declaration in case 1, we can see that regardless of whatever keywords itself is, an expression of the 

form *keywords[i] has type char. Therefore, we can assign such an expression to the char variable c, as 

shown.  In case 2, the operator precedence table tells us that [] takes precedence over unary *.  Therefore, 

keywords is subscripted giving a pointer to char which is then dereferenced to give the value of the char to 

which it points, and that char's value is assigned to c. 

What we see then is that the order of precedence of operators in the expression is identical to that of the same 

characters used as punctuators in a declarator.  So, we can talk about precedence of evaluation of operators in 

expressions and precedence of binding of punctuators in declarations.  In any event, we use the precedence table 

to resolve both. 

                                                           

1 For more information on pointers to arrays, refer to §6.2. 
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Using this information let's reconsider the declarator char *keywords[10].  Since [] takes precedence over *, 

keywords is first and foremost an array of 10 elements, each of which is a pointer that points to a char. 

Returning to our earlier example, once we apply the associativity suggested by the precedence table, we get the 

following declarators: 

char **ppc;             /* * associates right-to-left  */ 

char ***pppc;           /*      "       "        "     */ 

long table[10][5];      /* [] associates left-to-right */ 
long counts[5][4][6];   /*      "       "        "     */ 

In the case of ppc, we have two punctuators with the same precedence. However, the precedence table indicates 

that multiple * operators (and punctuators) associate right to left.  In the case of multiple [] punctuators, they 

associate left to right, as would a combination of [] and (). 

3.6 Forcing Punctuator Precedence 

If char *keywords[10] declares keywords to be an array of 10 pointers to char, how do we declare a pointer 

to an array of 10 char? Both declarators require a prefix * and a postfix []. 

The way we change the precedence of operators in an expression is to use grouping parentheses.  We can also 

use them to change the precedence of binding of punctuators in a declarator, as follows: 

char (*pa)[10]; /* pa is a ptr to an array of 10 elements of type char */ 

Here, the parentheses force the * to bind closer to pa than does [] causing pa to be first, and foremost, a 

pointer, which points to an array of 10 elements, each of which is a char. 

Just as we can have redundant grouping parentheses in expressions, they can also exist in declarations.  

Therefore, some of our earlier declarations can be rewritten as follows: 

char (*(*ppc)); 

long ((table[10])[5]); 

char (*(keywords[10])); 
double (*(test(void))); 

In these cases, the grouping parentheses simply document the default binding.  Once we have mastered the 

reading of such declarations, we generally would not use the extra parentheses, since they tend to clutter up the 

declarator. 

3.7 Writing Declarations 

From our 3×3 type derivation table, we know the limits of type derivation.  Now, we can apply this information to 

write any arbitrarily complex declarator.  Let's start with a relatively simple one: 

Case 1: pf is a static pointer to a function that takes one argument of type "pointer to const char" and 

returns a pointer to an int. 

It is most important that the English description be written left-to-right, which is the reverse order of the levels of 

derivation.  Specifically, the name of the identifier being declared goes to the extreme left and the term on the 

extreme right must be a basic type keyword.  The trick to converting these words into the corresponding 

declaration is to work from left to right. 
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The sentence describing a derived type must be made up of a combination of only three phrases: "an array of 

n elements each of which is", "a function returning", and "a pointer to". Only the six valid combinations shown in 

the type derivation table are permitted.  Once we have written the description, if none of the three invalid 

combinations is present, the description can be turned into a valid declarator. 

Before we start writing the corresponding declarator, it is useful to rewrite the description leaving out all function 

argument, storage class, and type qualifier information.  We shall explain why later.  The revised description then 

is: 

Case 2: pf is a pointer to a function that returns a pointer to an int. 

Let's start writing the declarator.  First, pf is a pointer: 

 (*pf) 

Since the pointer notation uses a prefix punctuator we write the * before the pf.  We surround *pf with 

parentheses to ensure that the * binds tightest regardless of any other punctuators that might follow. 

This pointer points to a function, so we add the postfix function-call punctuator and the binding parentheses: 

 ((*pf)()) 

This function returns a pointer, so we add the prefix * and yet another pair of grouping parentheses: 

 (*((*pf)())) 

And, finally, this pointer points to an int, so we add the basic type int as a prefix, giving the syntactically 

complete declarator: 

int (*((*pf)())) 

We have added grouping parentheses at every step just in case they were needed.  In this example, as often 

happens, one or more of the pairs are redundant and can be removed.  (Of course, leaving them in causes no 

harm unless we feel it hurts readability.) Let's determine which sets of parentheses are redundant.  To make it 

easier, we'll number the sets of grouping parentheses (being careful to ignore the function-call parentheses), as 

follows: 

int (*((*pf)()))

3

2
1

 

Clearly, pair 1 is redundant, since no other punctuators are outside them.  Pair 2 is also redundant, since () has 

higher precedence than *. If we erase those two pairs, we get: 

int *(*pf)() 
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Now we have one pair left, pair 3.  They ensure that * has precedence over () and, since this is not the case by 

default, the parentheses are needed.  If they were removed (as in int **pf();), pf would become a function 

that returns a pointer to a pointer to an int, a quite different type. 

Now we can add the function argument, storage class, and type-qualifier information we removed earlier. Each 

argument to a function can be described using an English sentence and turned into a declarator using the rules we 

have just learned. We can add the argument information in all function-call parentheses, and then add any type 

qualifiers. There can be one storage class keyword only in a declarator and that goes at the front.  The complete 

declarator then is: 

static int *(*pf)(const char *arg) 

Exercise 3-1: Convince yourself that the declarators shown below match their English 

descriptions: 

1. f is a function that takes no arguments and returns a pointer to a function that takes no 

arguments and returns a pointer to an array of 10 elements each of which is a structure of type 

tag. 

 

struct tag (*(*f(void))(void))[10]; 

2. p is a pointer to a pointer to an array of 5 elements, each of which is a pointer to a double. 

 

double *(**p)[5]; 

3. a as an array of 10 elements, each of which has 5 elements, each of which is a pointer to a 

function taking no arguments and returning a long. 

 

long int (*a[10][5])(void); 

3.8 Reading Declarations 

Once we understand the rules for writing a declarator, reading a declaration is easy—we simply apply the rules in 

reverse.  The only difference is that the declaration almost certainly does not contain redundant grouping 

parentheses, in which case, we will have to revert to the precedence table to determine the order of binding of 

the punctuators. 

If the declarator is complex, follow these steps in order: 

1. Remove all function-argument, storage-class, and type-qualifier information. Using the example we just 

wrote, this results in int *(*pf)(). 

2. Make sure there are grouping parentheses around every term/punctuator pair. We now have 

int (*((*pf)())). 

3. Read the declarator starting from the identifier being declared.  (Since function arguments were removed 

in the first step, there will be only one identifier left in the declarator.) We now read, "pf is a pointer to a 

function that returns a pointer to an int". 

4. Add text to the declarator that corresponds to all function-argument, storage-class, and type-qualifier 

information removed in step 1. 
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Let's use the information we have learned to determine what the declaration of signal means: 

void (*signal(int signal_type, void (*action)(int)))(int); 

signal is a function that takes two arguments, the first having type int and the second having type "pointer to 

function taking one argument of type int and returning void". signal returns a value of type "pointer to 

function taking one argument of type int and returning void". The type of the return value is the same as that of 

the second argument. 

Exercise 3-2: Convince yourself the following declarators mean what the narrative says: 

1. register long int (*(*x)(const double *pd))[5]; 

declares x as a register pointer to a function taking an argument of type "pointer to const 

double" and returning a pointer to an array of 5 long ints. 

2. enum color *(*(*(*a[5])[3])(void))[6]; 

declares a to be an array of 5 pointers to an array of 3 pointers to functions taking no arguments 

and returning a pointer to an array of 6 pointers to enums of type color. 

3.9 Using Type Information 

Obviously, it is necessary to know how to construct a declaration if we are ever to have an identifier of that type.  

However, once we have mastered the reading and writing of declarations, our job is not completed. To exploit 

fully the language, we must learn how to apply that type information in other ways. 

C uses type information in a number of contexts.  Apart from identifier declarations, types can be used in casts, 

with sizeof, and in defining type synonyms with typedef.  We will look at the rules in constructing each of 

these and will apply them to a series of types, which have an increasing degree of complexity. 

The following rules describe how to apply type information.  Rule 1 explains how to extract type information from 

a declaration while rules 2–4 explain how to build a cast, use sizeof, and use typedef, respectively. 

Rule 1: To extract the type information from a declarator, omit the identifier.  The following table shows some 

examples of declarators and their corresponding types: 

Table 3-2: Some Declarations and their Corresponding Types 

Declaration Type 

double d double 

short int s[6] short int [6] 

struct tags *pstr struct tags * 

union tagu (*pun)[7] union tagu (*)[7] 

enum tage (*(*pf)(void))[3] enum tage (*(*)(void))[3] 

 

Rule 2: To generate a cast for type T, use Rule 1 to extract the type information, enclose it in parentheses, and use 

it as a prefix operator. 
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Rule 3: To find the size of an object of type T, use Rule 1 to extract the type information, enclose it in parentheses, 

and use it as the postfix operand of the sizeof operator. 

Rule 4: To create a synonym for a type, declare an identifier to have that type.  Add the keyword typedef in 

front of the declaration; now that identifier is a synonym for that type. 

Let's apply these rules to four declarators: 

Table 3-3: A Pointer to char 

Action Syntax 

declaration char *pc; 

cast (char *) expression 

sizeof sizeof(char *) 

type synonym typedef char *PTC; 

 

Table 3-4: An Array of 5 Pointers to char 

Action Syntax 

declaration char *ap[5]; 

cast (char *[5]) expression 

sizeof sizeof(char *[5]) 

type synonym typedef char *A5PTC[5]; 

 

The cast generated by the rules in this example is invalid—we cannot cast to an array type. 

Table 3-5: A Pointer to an Array of 5 char 

Action Syntax 

declaration char (*pa)[5]; 

cast (char (*)[5]) expression 

sizeof sizeof(char (*)[5]) 

type synonym typedef char (*PA5C)[5]; 
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The parentheses around * are not redundant—they serve to distinguish between an array of pointers and a 

pointer to an array. 

Table 3-6: A Pointer to a Function Returning an int 

Action Syntax 

declaration int (*pf)(void); 

cast (int (*)(void)) expression 

sizeof sizeof(int (*)(void)) 

type synonym typedef int (*PTFRI)(void); 

 

Again, the parentheses around * are not redundant. 

Exercise 3-3: Look at the definitions of the macros SIG_DFL, SIG_ERR, and SIG_IGN in 

signal.h.  Typically, they involve a complex cast expression. 
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6. The Comma Operator 

6.1 The Basics 

One of the most confusing (and consequently least used) operators is the comma.  The confusing aspect is that 

this operator is represented by the comma, yet almost every comma token present in a C program is a comma 

punctuator, not an operator.  Despite its unfortunate spelling, the comma operator is a very powerful tool, as we 

shall see. 

Consider the following example: 

i = 0; 

j = 0; 

for (k = 0; k > 0; --k) 

{ 

        /* … */ 

        ++i; 

        ++j; 
} 

By definition, the for construct contains three optional expressions separated by semicolons.  In this example, 

each expression is simple. We can rewrite this example as follows: 

for (i = 0, j = 0, k = 0; k > 0; ++i, ++j, --k) 

{ 

        /* … */ 
} 

To do more than one thing at initialization and at the end of each iteration of the loop, we can specify a set of 

expressions separated by comma operators.  As shown above, each comma operator expression contains three 

subexpressions.  The comma operator allows us to paste together an arbitrary number of expressions and have 

them treated syntactically as one large expression. 

The comma is a binary operator, and its two operands can be expressions of any data type, including void.  It has 

the lowest precedence of all the operators, and it associates left-to-right.  A comma expression has the following 

general form: 

exp1, exp2 

The left operand, exp1, is evaluated, and its value is discarded.  Therefore, to be useful, exp1 must contain a side-

effect.  Then the right operand, exp2, is evaluated, and its type and value, if any, become that of the whole 

comma expression.  Consider the following example. It is not intended to produce a useful result; it merely 

demonstrates the syntax. In fact, each statement can be rewritten more clearly, as shown in the corresponding 

comment: 
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int f(); 

int g(); 

int i; 

int j = 10; 

 

void test() 

{ 

/*1*/   i = (f(), g());         /* f(); i = g(); */ 

/*2*/   i = f(), g();           /* i = f(); g(); */ 
/*3*/   i = (j++, ++j);         /* j += 2; i = j; */ 

/*4*/   i = 5, j = i, f();      /* i = 5; j = i; f(); */ 
} 

In case 1, function f is called and the int value returned is discarded.  Then function g is called, and the int 

value it returns becomes the value of the whole comma expression.  This value is then assigned to i.  Note that 

the grouping parentheses force the comma to take precedence over the assignment. 

In case 2, function f is called and the value it returns is assigned to i, since assignment has higher precedence 

than comma.  The assignment side-effect is completed before the right operand is evaluated.  This is important, 

because g might access the global i.  Then function g is called, and the value it returns is used as that of the 

whole comma expression.  In this case, the result actually is discarded, but that is not a property of the comma 

operator—we simply failed to use it. 

In case 3, j++ is evaluated.  Again, the side-effect is completed before the right operand is evaluated.  Then the 

right operand is evaluated, and its value is assigned to i. 

Since the order of evaluation is guaranteed by each comma in case 4, it can easily be rewritten as three separate 

statements as shown. 

There are situations in which comma operators and punctuators can be used in the same context.  For example: 

/*1*/   f(i, j) 
/*2*/   g((++i, j)) 

An argument list is a possibly empty list of expressions separated by comma punctuators.  Therefore, function f is 

called with two arguments, i and j.  Function g, on the other hand, is called with only one argument, since the 

expression in the argument list is the comma expression (++i, j).  The outer parentheses represent the 

function call operator, while the inner pair represent grouping. 

The comma operator has two important properties.  First, it allows an arbitrary number of expressions to be 

pasted together, yet syntactically they are all considered part of one big expression.  Second, the type and value 

of the right-most expression percolates to the front, becoming the type and value of the result. 

It should be obvious that the comma operator can detract from a program's readability and we should avoid using 

it as much as possible. 

A common misuse of the comma operator is as follows: 

for (exp1, exp2, exp3) 

{ 

        /* … */ 
} 



Preface 

 

© 1988–1991, 2018 Rex Jaeschke.  53 

The two commas should be semicolons. However, the compiler treats them as comma operators and does not 

complain about missing semicolons until the right parenthesis is seen. 

Exercise 6-1: What is the value of sizeof(c++,c) where c has type char? What is the 

significance of the ++? 

Exercise 6-2: Consider the following program fragments.  Can you find any use for such 

constructs? 

while (f(), i) 

        /* … */ 

 

for ( exp1 ; f(), i; exp3 ) 
        /* … */ 

Exercise 6-3: Programmers new to C, or those who switch between C and other languages, 

sometimes write multidimensional array subscripts as a[i,j] instead of a[i][j].  What kind of 

message, if any, does your compiler produce in such cases? If a is a two-dimensional array of 

char having size 4×6, what is the type of the expression a[i,j]? 

6.2 A Function Trace Facility  

In this section, we examine a relatively simple technique for producing an audit trail of function calls.  The key to 

this technique lies in the inclusion of a tracing header in every source file, some clever use of various preprocessor 

capabilities, and the comma operator. 

6.2.1 Defining the Problem  

Consider the following functions main, f, and g, and the header they share, each of which is defined in its own 

source file.  The program is not meant to serve any useful purpose other than to call function f from several 

different places (see files co01*.*):  

#ifndef MSCO01_H 

        extern void (f)(void); 

        extern void (g)(void); 

 

        #define MSCO01_H 

#endif 
/* ------------------------------ */ 

#include <stdio.h> 

#include "co01.h" 

 

int main() 

{ 
        f(); 

        g(); 

        f(); 

 

        return 0; 

} 
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/* ------------------------------ */ 

#include <stdio.h> 

#include "co01.h" 

 

void (f)() 

{ 

        printf("inside f\n"); 

} 

/* ------------------------------ */ 
#include "co01.h" 

 

void (g)() 

{ 

        f(); 

} 

As the program has multiple, global functions, they are all declared in a header that is included in all the places 

those functions are called or defined, to ensure those functions are called correctly. 

When run, the output produced is:  

inside f 

inside f 
inside f 

Now the redundant parentheses around the function names in their declarations and definitions are quire 

unusual, and something you are unlikely to come across in the real world. However, they are needed for the 

solution shown later to work. As such, they’ll have to be added. However, once you know of the technique 

presented, you may wish to put them in all future code; doing so certainly doesn’t hurt. 

Now we wish to get a traceback of each place we call function f, so we can see just what call path we are going 

down.  Perhaps this function sometimes behaves strangely, and we wish to see under what circumstances it is 

being called.  Ideally, we would like to be able to achieve this by making as few changes as possible to the existing 

code.  Why? Having overt debugging code inline almost always makes the code harder to read; it's distracting.  

Also, it means we must explicitly find all the places where f is called, so we can add the trace facility.  

6.2.2 Tracing Function Calls 

The approach we use is to write a function-like trace macro called f such that every call to the function f will 

actually be recognized as a call to our trace macro instead.  Our macro will then do any extra work we require, as 

well as actually calling the user's function f.  

To make sure we are able to substitute the macro for the function we must make that macro definition available 

to all source files we create in the project.  And if we have no tracing in progress, we can provide a way to not 

define that macro.  For this demonstration the header will be called co01trace.h.  Because we never know at 

design time which modules we might wish to debug, and in theory all modules are candidates for debugging, this 

header should be included in each source file.  
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Here’s the modified version of co01.h:  

#ifndef MSCO01_H 

        extern void (f)(void); 

        extern void (g)(void); 

 

        #ifdef TRACE 

                #include "co01trace.h" 
        #endif 

 

        #define MSCO01_H 
#endif 

As such, we can toggle tracing on/off by defining/not defining the macro TRACE during compilation. 

And here’s the trace header, co01trace.h: 

#ifndef MSCO01TRACE_H 

    void traceA(const char *filename, unsigned int line); 

    void traceB(const char *filename, unsigned int line); 

 

    #define f() (traceA(__FILE__, __LINE__),    \ 
        f(),                                    \ 

        traceB(__FILE__, __LINE__)) 

 

    #define MSCO01TRACE_H 
#endif 

The macro f expands into calls to traceA, f, and traceB, in that order.  Functions traceA and traceB are 

called immediately before and after f, respectively.  We might wish to use only one of the trace functions 

depending on what it is we are trying to detect.  Since the original user's code f() is an expression of type void, 

the definition of macro f must expand to an expression of the same type, so the replacement is transparent to 

the user program.  Hence the use of the comma operator to paste all three function calls into one large 

expression.  The type of the macro expression is the type of the right-most subexpression, traceB(), which is 

void, the same as function f.  The outer grouping parentheses are present to preserve the very low precedence 

of the comma operator. 

A problem with C preprocessors prior to C89 involves the definition of the macro f.  Back then, some 

preprocessors recursively expanded a macro if its definition contained a direct or indirect reference to itself.  In 

this example, macro f expands directly to a call to function f.  According to Standard C, such references do not 

expand further, thus allowing the approach used here.  If, however, our preprocessor recurses here we need to 

make a minor change, as in: 

#define f() (traceA(__FILE__, __LINE__),    \ 

    (f)(),                                  \ 

    traceB(__FILE__, __LINE__)) 
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By adding seemingly redundant parentheses around the f in the function call, we have stopped the preprocessor 

from seeing a call to the function-like macro f. Such a call is recognized by an occurrence of the macro name for 

which the next source token is a left parenthesis. In this case it is not; it is a right parenthesis.  

Knowing this, we need to protect the declaration and definition of global function f from being seen as calls to 

our object-like macro f, which is why they have enclosing parentheses in the header co01.h. 

Here are the trace functions, which simply write the calling source filename and line number to stderr, and keep 

track of the number of times they have each been called.  They could be made to write the trace to a file or 

device, to display global variables, or perform other operations as deemed appropriate:  

#include <stdio.h> 

 

void traceA(const char *filename, unsigned int line) 

{ 

        static unsigned int counter = 0; 

 

        fprintf(stdout, "traceA> %3u: file: %s, line: %u\n",  

            ++counter, filename, line); 

} 

/* ------------------------------ */ 

void traceB(const char *filename, unsigned int line) 

{ 

        static unsigned int counter = 0; 

 

        fprintf(stdout, "traceB> %3u: file: %s, line: %u\n\n", 

            ++counter, filename, line); 
} 

When the program is run with the macro TRACE defined, the output produced is: 

traceA>   1: file: co01.c, line: 17 

inside f 

traceB>   1: file: co01.c, line: 17 

 

traceA>   2: file: co01g.c, line: 16 

inside f 

traceB>   2: file: co01g.c, line: 16 

 

traceA>   3: file: co01.c, line: 19 

inside f 

traceB>   3: file: co01.c, line: 19 

6.2.3 Functions with Arguments 

The approach described above works for functions having no arguments; however, in reality, functions most often 

take one or more arguments. Let's add one int argument to f. Not only can we define the macro to handle that 

argument, we can trace the exact expression text used as the argument in each call.  For example (see files 

co02*.*):  

extern void (f)(int); 
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/* ------------------------------ */ 

int main() 

{ 

        int i = 5; 

 

        f(i + 4); 

        g(); 

        f((2 * i * i) + (3 * i) + 4); 

 
        return 0; 

} 

/* ------------------------------ */ 

void (f)(int i) 

{ 

        printf("inside f with value %d\n", i); 
} 

/* ------------------------------ */ 

void (g)() 

{ 

        f(sizeof(double)); 
} 

The output produced is:  

traceA>   1: file: co02.c, line: 19, argument-text: i + 4 
inside f with value 9 

traceB> ... 

 

traceA>   2: file: co02g.c, line: 16, argument-text: sizeof(double) 

inside f with value 8 

traceB> ... 

 

traceA>   3: file: co02.c, line: 21, argument-text: (2 * i * i) + (3 * i) + 4 

inside f with value 69 

traceB> ... 

traceA displays the actual set of source tokens, after macro expansion, used in each call.  The key to this 

approach lies in the definition of the macro f:  

#ifndef MSCO02TRACE_H 
    void traceA(const char *filename, unsigned int line, const char *argText); 

    void traceB(const char *filename, unsigned int line, const char *argText); 

 

    #define f(arg) (traceA(__FILE__, __LINE__, #arg),    \ 

            f(arg),                                      \ 
            traceB(__FILE__, __LINE__, #arg)) 

 

    #define MSCO02TRACE_H 
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#endif 

The unary preprocessor operator # generates a string literal from the source tokens of the actual macro 

argument.  Most importantly, this operator does not evaluate its operand!  This string is then passed as the new 

third argument to both trace functions. (For the purposes of this example, traceB is unimportant.) 

void traceA(const char *filename, unsigned int line, const char *argText) 

{ 

    static unsigned int counter = 0; 

 

    fprintf(stdout, "traceA> %3u: file: %s, line: %u, argument-text: %s\n", 

        ++counter, filename, line, argText); 
} 

 

void traceB(const char *filename, unsigned int line, const char *argText) 

{ 

    static unsigned int counter = 0; 

 
    fprintf(stdout, "traceB> ...\n\n"); 
} 

The technique can be extended to handle functions with a any fixed number of arguments. For example:  

#define f(arg1, arg2)                                \ 

    (trace1(__FILE__, __LINE__, #arg1 ", " #arg2),   \ 

    f(arg1, arg2),                                   \ 

    trace2(__FILE__, __LINE__, #arg1 ", " #arg2)) 

The trick here is to concatenate the text of all the arguments into one large string literal.  This technique requires 

compiler support for concatenation of adjacent string literals, which C89 introduced.  

Exercise 6-4*: While the approach shown above displays the text of the arguments, it does not 

show the value of those arguments, something you’d likely want to know as well. So, how to do 

that as well? The obvious solution is to extend the trace functions and macro, as follows: 

void traceA(const char *filename, unsigned int line, 

    const char *argText, int argVal); 

void traceB(const char *filename, unsigned int line, 

    const char *argText, int argVal); 

#define f(arg) (traceA(__FILE__, __LINE__, #arg, arg),    \ 

    f(arg),                                               \ 

    traceB(__FILE__, __LINE__, #arg, arg)) 

However, this has a major weakness.  Consider the following calls to f, each of which contains 

side effects: 

f(i++ + 2); 
f(10 - --i); 

As defined, the macro would result in the evaluation of each argument three times when it should 

only be evaluated once. The trace macro must not change the meaning of the program. To resolve 
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this, we need to evaluate the argument once, store that value somewhere, and then use that 

stored value in the other places. [Hint: How about using a global variable?] (See labs directory 

lbco01.) 

Exercise 6-5*: Thus far, we’ve ignored the possibility of the function being traced returning a 

value. Enhance the macro f from the exercise above to support this as well. (See labs directory 

lbco02.) 

Exercise 6-6*: C99 added the ability of declaring a function inline. If your compiler supports this, 

implement a solution to the trace problem that uses an inline function (and which no longer 

needs the comma operator). (See labs directory lbco05.) 

Exercise 6-7*: Can this approach to tracing be applying to a function taking a variable number of 

arguments, such as printf? Certainly, a limited subset of the functionality can be achieved by 

defining f to be an object-like macro. (See labs directory lbco03.) However, if your compiler is 

C99-compliant, you can define an object-like macro to have a variable number of arguments using 

the ... punctuator and the special name __VA_ARGS__.. (See labs directory lbco04.) 
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The first argument is a count of the arguments that follow. In such an approach, the type of this argument 

determines the maximum number of arguments a function can have. For example, an unsigned char, where 

chars have eight bits, limits functions to 255 arguments, which seems like a reasonable number. In this model, 

the size of each argument is usually required to be the same. This gives rise to the idea of wide and narrow types. 

For example, why have arguments of types char, short, and float historically been widened to int, int, and 

double, respectively? Well on some systems, this is necessary to keep objects of certain types aligned. 

This calling-argument format works well when all arguments are passed by address, or small-size arguments are 

passed by value. However, it breaks down when large structures are passed by value. It can also be a problem 

when a long int, a long long int, a double, or a long double is passed by value since the size of these may 

exceed the size of an argument in this model. As a result, the argument count is no longer a count of logical 

arguments but, rather, of entries in the argument list. For example, if each argument in the list is four bytes and 

we pass a 100-byte structure by value, the argument count would be 25, not 1. So, the upper limit of 255 could be 

reached by passing just one large structure by value. 

The model for argument passing usually employed by a C implementation is close to that shown above. However, 

most often, an argument count is not automatically supplied; if the user wants one they must provide it 

themselves. The implication of this is that calls such as the following cannot be dealt with in a portable manner: 

maximum(10, 5, 6, 7) 

maximum(2, 65, 876) 

maximum(7654, 234, 2374, 3421, 6487) 

Without a preceding argument count, how can maximum determine the number of arguments passed to it? We 

could reserve some special-valued terminator but that really isn't workable. For example, all int values are 

valid—how would we terminate a variable-length list of ints in a call to maximum? For pointer argument lists, a 

null pointer would certainly work, however; but what about lists of arguments having mixed types? 

Languages that support calls similar to those of maximum typically do so because they have intrinsic functions 

built-in to the language; they are not really calls to externally compiled routines. As such, the compiler can 

generate special code behind the scenes to deal with such lists. 

Essentially, the C model requires that the programmer pass the argument count as part of the list, either explicitly 

as a number, or implicitly by something like the conversion specifiers used by printf and scanf. For example: 

/*1*/   maximum(4, 10, 5, 6, 7) 

 
/*2*/   printf("%d %f", i, d) 

In case 1, the first argument, 4, indicates that four more arguments follow. By definition, maximum expects all 

arguments to have the same type; in this case, int. In case 2, there are two conversion specifiers indicating that 

two more arguments follow. Their types are encoded in the specifiers allowing arguments of mixed types to be 

used. 

Undefined Behavior: In a call to a function having a variable number of arguments, if the number 

and/or type of arguments following the explicit or implicit argument count do not match what 

was promised. 
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Therefore, passing a variable number of arguments requires the programmer to check all such calls for 

correctness since the compiler cannot. 

8.2 Implementing a Maximum Function 

The following example shows how to use and define a function maxi, which returns the maximum of a set of int 

arguments (excluding the count) passed to it (see directory va01): 

#include <stdio.h> 

#include <stdarg.h> 

#include <limits.h> 

 

/*1*/   int maxi(int, ...); 
 

int main() 

{ 

/*2*/   printf("-> %d\n", maxi(4, 10, 20, -5, 17)); 

/*3*/   printf("-> %d\n", maxi(3, -10, -5, -17)); 

 
/* is type of second argument int or long? */ 

 

/*4*/   printf("-> %d\n", maxi(3, 65432, -5, -17)); 

 

/* call maxi with count too small or too large */ 

 
/*5*/   printf("-> %d\n", maxi(2, 10, -5, 17)); 

/*6*/   printf("-> %d\n", maxi(4, 10, -5, 17)); 

 

        return 0; 

} 

The output produced on one system in which ints are 16 bits and longs are 32-bits was: 

4: 10, 20, -5, 17, -> 20 

 3: -10, -5, -17, -> -5 

 3: -104, 0, -5, -> 0           /* argument 65432 misinterpreted */ 

 2: 10, -5, -> 10 
 4: 10, -5, 17, 250, -> 250     /* undefined behavior            */ 

The output produced on one system in which ints and longs are both 32-bits was: 

4: 10, 20, -5, 17, -> 20 

 3: -10, -5, -17, -> -5 

 3: 65432, -5, -17, -> 65432    /* argument 65432 handled correctly */ 
 2: 10, -5, -> 10 
 4: 10, -5, 17, 4391048, -> 4391048     /* undefined behavior       */ 

In case 1, in the prototype for maxi, the ellipsis punctuator indicates that maxi takes a variable number of 

arguments. 
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Undefined Behavior: If a function taking a variable number of arguments is called without a 

prototype containing an ellipsis in scope. 

For example, without an ellipsis in scope at the call, the compiler might pass arguments in a way unexpected by 

the function itself; for example, in registers. 

In cases 2 and 3, maxi is called correctly as shown by the output produced. 

The function call in case 4 is subject to the type of the integer constant 65432. On some systems, it will be int, on 

others, long int. In the case of long int, the value passed likely will be interpreted in parts, as two or more 

ints, resulting in incorrect output. 

Case 5 is quite predictable; since we promised two values, maxi takes only the next two arguments resulting in a 

maximum value of 10. Any excess arguments in the call are evaluated and their values passed in, however; those 

values are simply not used. 

Case 6 results in undefined behavior since we have promised more arguments that we delivered. maxi marches 

to where the fourth argument should have been, typically grabbing some set of bits that it interprets as an int. 

The program could even fail! The worst than can happen is that the pseudo-int found has a value less than the 

others passed explicitly, misleading the programmer into thinking everything is fine when, in fact, there is a 

serious error laying dormant should that value ever be greater than all the others passed. 

Here then is the source for maxi: 

/*7*/ int maxi(int parmn, ...) 

{ 

/*8*/   va_list ap; 

        int value, j; 

/*9*/   int max = INT_MIN; 

 

/*10*/  va_start(ap, parmn); 

        printf("%2d: ", parmn); 

 

/*11*/  for (j = 1; j <= parmn; ++j) 

        { 

/*12*/          value = va_arg(ap, int); 

                printf("%d, ", value); 

                if (max < value) 

                { 

                        max = value; 

                } 

        } 

 

/*13*/  va_end(ap); 

        return max; 
} 
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Like the prototype, the definition for maxi must also contain the ellipsis, as shown in case 7. 

In case 8, we define an object of type va_list. This is used internally by a series of macros that we shall use to 

traverse the argument list passed to maxi. Since argument-passing details can vary considerably from one 

implementation to the next, the format is hidden behind several macros and this type. All Standard C says about 

va_list is it is a type suitable for holding information needed by the macros va_start, va_arg, va_end, and 

va_copy. The name ap is often chosen for this variable since it stands for "argument pointer". 

In case 9, we seed the function's return value with the smallest possible value an int can hold, INT_MIN, a macro 

defined in limits.h. 

A function taking a variable number of arguments must take at least one. That is, the argument list is made up of a 

leading fixed part followed by a variable trailing part. In the case of maxi, the fixed part consists of one argument, 

parmn. Regardless of how many arguments are in the fixed part, the right-most fixed argument, in this case 

parmn, is most important since this must be given to the macro va_start, as shown in case 10. va_start gets 

the program ready to start accessing the variable part of the argument list, whatever that entails. We don't need 

to know what ap is or how it is used, and we shouldn't even care; it works and its use is portable. 

Since maxi expects each of the arguments in the variable part of the list to have the same type, we can deal with 

them inside a loop, which we start in case 11. (When writing a function with an interface like printf, we would 

need a set of calls to va_arg, one for each expected argument type. For example, va_arg(ap, double), 

va_arg(ap, char *), and the like.) 

In case 12, we pick off the next argument from the variable part of the list using the macro va_arg. Clearly, this 

must be a macro since its second argument is required to be a type, something not possible with a function. (This 

type typically is used in a rather interesting cast.) The macro expands to a value of the type specified in the second 

argument and, if the function was called correctly, this value is that of the next argument. This value is displayed 

simply to monitor the program's progress. 

In case 13, once the whole of the variable part of the argument list has been processed, we call va_end, which 

cleans things up internally. Finally, we return the maximum value computed. 

The disadvantage of this whole approach is that we must count the number of arguments ourself and pass that 

count in explicitly. Unfortunately, there is no other solution if we wish to remain portable. 

In certain cases, we can avoid using a variable argument list completely even though it appears we need one. For 

example, we could implement a maximum function by always passing it two arguments, a count and an array of 

values. However, for this to work the values must be organized directly in an array, and this is not always possible 

to arrange. Also, this approach is less overt from a notational point of view. 

C99 added the va_copy macro to all a variable-argument list processing environment to be cloned. 

Exercise 8-1*: Write a function called concatStr that takes a variable number of arguments: a 

string count followed by that many strings. It returns a new string that is a concatention of all the 

string arguments, in order left-to-right. Here are several examples of calling that function: 

newStr = concatStr(3, "abc", "", "vwxyz"); 
newStr = concatStr(5, "qq", "123", "ww", "444", "xxxxx"); 

(See labs directory lbva01.) 
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8.3 The Use of restrict 

The standard library function printf is declared as follows: 

int printf(const char * restrict format, ...); 

As we discussed in §2.4, there is generally no point is using restrict in a function declaration unless that 

function has multiple arguments of the same pointer type. In the case of printf (and scanf), we can make no 

promises about whether the arguments that might be passed as part of the variable-argument list are aliases 

format or each other. The best we can do is to promise that format is not an alias to anything else. 
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12. Non-Local Jumps 

The C library provides a facility to transfer control directly from one function to a parent function bypassing the 

usual function-return machinery. In this section, we will see how this very specialized facility can be used to solve 

real-world problems. 

12.1 Introduction 

A typical program involves a number of functions.  Control is transferred from main downward through a 

hierarchy of functions and back up again.  If a problem is encountered inside a function and it cannot be 

recovered from in that function, we typically return some error status value to its caller.  And if that function can't 

recover, it too returns an error status to its caller, and so on. 

While this approach can be made to work, it has several drawbacks.  First, we have to write code in each affected 

function to handle such failures.  That makes the program bigger and more complex.  Second, that code is 

executed each time we return from a function call whether an error has occurred or not.  That is, we have to 

check "just in case". 

A more efficient approach would be to always assume the called function did its job properly, and in the 

(hopefully) few cases where it didn't, handle that somehow outside the normal function calling machinery.  This 

makes the code logic simpler and we only pay the price of error handling when an error actually occurs. 

The machinery for achieving this is provided in the standard header setjmp.h and involves the functions setjmp 

and longjmp, and the type jmp_buf. Essentially, a program's context can be saved into an object of type 

jmp_buf by setjmp, and the program can be restored to that context by a subsequent call to longjmp.  What 

this amounts to is having a goto that can transfer back up the call tree into the middle of another function.1 

Initially, setjmp is called to save the current context of the program.  A corresponding call to longjmp causes 

control to return to the function in which setjmp was first called.  It does this by returning as though setjmp had 

been called a second time.  That is, longjmp causes an unconditional jump into the routine setjmp, which, in 

turn, returns to its original caller with a return value corresponding to the second argument passed to longjmp.  

When the programmer explicitly calls setjmp, it returns a zero value.  When setjmp returns via an unconditional 

jump from longjmp, it returns a user-defined nonzero value.  Note that longjmp does not return to its caller.  

Rather, it returns to the caller of setjmp. 

12.2 Some Examples 

Implementation-Defined Behavior: The actual information that constitutes a current program 

context might be as little as a few machine registers. 

                                                           

1 If you despise goto you likely won't be very excited about setjmp and longjmp either.  However, each has legitimate 
uses. 



Advanced Programming in C 

24  © 1984–1996, …, 2018 Rex Jaeschke. 

It is imperative that we understand just what is and is not preserved across a longjmp.  All external and static 

objects are preserved but auto and register variables are not.  Also, even if all machine registers are saved, 

there is no way of knowing which autos were placed in registers or which register storage class objects were 

not in registers. 

Undefined Behavior: The state of all auto and register objects defined in the function that 

calls setjmp after longjmp has returned to that function. 

There is one important exception.  Any volatile automatic object is guaranteed to be intact. Of course, any 

changes we made to static, external, and volatile automatic objects between the setjmp and longjmp 

calls remain in effect as do any things written to disk, the screen, and other such changes to the runtime 

environment. Consider the following example (see directory sj01): 

#include <stdio.h> 

#include <setjmp.h> 

 

void test(jmp_buf buffer); 

 
int main() 

{ 

        jmp_buf buffer; 

        int i; 

        int j = 10; 

        register int k = 100; 
 

        i = setjmp(buffer); 

        printf("setjmp => %d, j = %d, k = %d\n", i, j, k); 

 

        j += 10; 

        k += 20; 
        if (i == 0) 

        { 

                test(buffer); 

        } 

 
        return 0; 

} 

 

void test(jmp_buf buffer) 

{ 

        longjmp(buffer, 1); 
} 

buffer is used to save the program's context.  jmp_buf is defined in the header in a manner appropriate for the 

host system.  j and k are non-volatile local variables whose values change in main. 

setjmp is called to save the current program context in the buffer allocated for it.  The function returns a zero 

value, which is displayed.  We then call test, which in turn, calls longjmp to restore the program to the 
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previously saved state.  The value 1 given to longjmp will be returned by setjmp to main and the program will 

continue execution back in main. 

When run on four different implementations, the following (different) results were produced.  All are permitted: 

setjmp => 0, j = 10, k = 100 

setjmp => 1, j = 20, k = 100 

 

setjmp => 0, j = 10, k = 100 

setjmp => 1, j = 20, k = 120 

 

setjmp => 0, j = 10, k = 100 

setjmp => 1, j = 10, k = 100 

 

setjmp => 0, j = 10, k = 100 

setjmp => 1, j = 79, k = 3440 

The variables j and k are automatic, and most implementations store automatics on a stack.  They may also store 

some of them in machine registers.  Remember, using the register keyword is a hint that the compiler is free to 

ignore.  Specifically, the presence of register does not guarantee a register will be used and the absence of 

register does not prohibit a register from being used; that's the compiler's business.  If the variable goes on the 

stack, its updated value will likely be preserved across the longjmp.  If it was stored in a register, its new value 

almost certainly will not be preserved. 

In the first set of outputs, it appears that j went on the stack and k went in a register.  In the second set both 

went on the stack and in the third set both went into registers.  In the fourth case, the "restored" values are 

weird.  Standard C, however, says that the values of such variables are undefined after the restore and that's what 

we see.  Since we generally have no control on how a compiler does such optimization, the program is unreliable 

if we want/need to count on the restored values being predictable. 

By using the volatile qualifier, we can force the restored value to be its most recent.  That is, to be preserved 

across the restore.  In the case of non-volatile automatics, we can remove the initializer and replace it with an 

assignment statement after the call to setjmp. This way we guarantee it will be reinitialized after every save and 

restore thereby producing a predictable value.  So, we can force a variable to have its original or its final value as 

we need, as follows (see directory sj02): 
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… 

int main() 

{ 

        … 

        volatile int j = 10;    /* force j to stay changed after restore */ 

        int k; 

        … 

 

        i = setjmp(buffer); 
        k = 100;                /* reset k after each restore */ 

        printf("setjmp => %d, j = %d, k = %d\n", i, j, k); 

 

        … 
} 

The output produced is: 

setjmp => 0, j = 10, k = 100 
setjmp => 1, j = 20, k = 100 

We can save as many program contexts as we like, and we can restore to any one of them provided we are 

restoring back up the function call tree that we came down.  For example, the following program (see sj03) saves 

contexts in functions main and testa and allows testa to restore to main or, testb to restore to either main 

or testa. 

#include <stdio.h> 

#include <setjmp.h> 

 

void testa(jmp_buf context); 

void testb(jmp_buf context); 

 

static jmp_buf context1; 

 
int main() 

{ 

        jmp_buf context2; 

        int i; 

 

        i = setjmp(context2); 

        printf("main:  setjmp => %d\n", i); 

 

        testa(context2); 

 

        return 0; 

} 
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void testa(jmp_buf context) 

{ 

        int i; 

        char input[2]; 

 

        i = setjmp(context1); 

        printf("testa: setjmp => %d\n", i); 

 
        printf("testa: Enter 1 to restore to main: "); 

        scanf("%1s", input); 

 

        if (input[0] == '1') 

        { 

                longjmp(context, 1); 

        } 

 

        testb(context); 

} 

 

void testb(jmp_buf context) 
{ 

        char input[2]; 

 

        printf("testb: Enter 1 to restore to main:\n"); 

        printf("       Enter 2 to restore to testa: "); 

        scanf("%1s", input); 

 

        if (input[0] == '1') 

        { 

                longjmp(context, 2); 

        } 

        else if (input[0] == '2') 
        { 

                longjmp(context1, 2); 

        } 
} 

The output produced is: 

main:  setjmp => 0 

testa: setjmp => 0 

testa: Enter 1 to restore to main: 1 

main:  setjmp => 1 

testa: setjmp => 0 

testa: Enter 1 to restore to main: <return> 

testb: Enter 1 to restore to main: 

       Enter 2 to restore to testa: 1 
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main:  setjmp => 2 

testa: setjmp => 0 

testa: Enter 1 to restore to main: <return> 

testb: Enter 1 to restore to main: 

       Enter 2 to restore to testa: 2 

testa: setjmp => 2 

testa: Enter 1 to restore to main: <return> 

testb: Enter 1 to restore to main: 
       Enter 2 to restore to testa: <return> 

A common use for this recovery machinery is in handling certain kinds of interrupts.  For example, assume we 

have begun computing a set of results on some data and the user discovers the data they entered is incorrect.  

Rather than wait for the computation to end, which could take many minutes or even hours, the user interrupts 

the program using something like a CTRL/C (or, on some systems, CTRL/D).  The program traps that interrupt and 

restores the program to the point at which it can prompt for a new set of inputs.  That is, it stops processing the 

old data and throws away the work it has done so far.  (It could choose to keep it if that were useful.) In this 

example (see directory sj04), the "work" we interrupt simply involves displaying a set of integer values: 

#include <stdio.h> 

#include <setjmp.h> 

#include <signal.h> 

 
jmp_buf buffer; 

 

void my_handler(int); 

 

int main() 

{ 

        int j; 

 

        setjmp(buffer);                 /* save context/return from restore */ 

        signal(SIGINT, my_handler);     /* register interrupt handler */ 

 

        printf("\nStarting loop from the beginning\n"); 
 

        for (j = 1; j <= 50; ++j)       /* start doing work */ 

        { 

                printf("%d ", j); 

        } 

 

        printf("\n"); 

        return 0; 

} 
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void my_handler(int arg)                /* Interrupt service function */ 

{ 

        signal(SIGINT, SIG_IGN);        /* ignore interrupts of this kind */ 

 

        longjmp(buffer, 1);             /* restore context */ 

} 

The output produced from several executions of this program were: 

Starting loop from the beginning 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ^C 

 
Starting loop from the beginning 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

24 25 26 27 ^C 

 

Starting loop from the beginning 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

44 45 46 47 48 49 50 

As the restore operation bypasses normal function cleanup and return, we must be particularly careful to free up 

resources we may have allocated.  This could involve memory or even devices we may have assigned for our 

exclusive use.  For example, the following program (see directory sj05) allocates memory but that memory isn't 

freed when a restore occurs.  Eventually, we run out of memory: 

#include <stdio.h> 

#include <setjmp.h> 

#include <stdlib.h> 

 

void test(jmp_buf buffer); 
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int main() 

{ 

        jmp_buf buffer; 

        char *pc; 

 

        setjmp(buffer); 

 

        pc = malloc(30000); 

        if (pc == NULL) 
        { 

                printf("Can't allocate memory\n"); 

                exit(1); 

        } 

        else 

        { 
                printf("Memory allocated\n"); 

        } 

 

        test(buffer); 

 

        return 0; 
} 

 

void test(jmp_buf buffer) 

{ 

        longjmp(buffer, 1); 

} 

The output produced is: 

Memory allocated 

… 

Memory allocated 
Can't allocate memory 

The following version (see directory sj06) frees the memory, if necessary, after each restore.  Note the use of 

volatile to guarantee that pc's value will be kept intact across the restore.  Be careful to apply the type 

qualifier to the pointer, not to the object to which it points. 
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… 

int main() 

{ 

        jmp_buf buffer; 

        char *volatile pc = NULL; 

 

        setjmp(buffer); 

 
        if (pc != NULL) 

        { 

                printf("Freeing old memory\n"); 

                free(pc); 

        } 

 

        pc = malloc(30000); 

        … 
} 

The output produced is: 

Memory allocated 

Freeing old memory 

… 
Memory allocated 
Freeing old memory 

12.3 Program Context 

jmp_buf is defined as an array of some suitable size to store the current program context, whatever that may be.  

Since an object of type jmp_buf is used only as a storage place for setjmp and longjmp, programmers should 

not be concerned about its actual representation.  In this respect, it is much like a FILE object. 

Implementation-Defined Behavior: The mapping of the type type jmp_buf. 

We must always include setjmp.h rather than declaring jmp_buf explicitly in our code.  For our interest, the 

following examples show how jmp_buf is defined in a number of diverse implementations: 

typedef int jmp_buf[15];/* VAX running VAX/VMS */ 

typedef int jmp_buf[9]; /* Intel 8088 running DOS */ 

typedef int jmp_buf[15];/* Intel 80386 running DOS */ 

typedef int jmp_buf[32];/* IBM 370 running AIX */ 

typedef int jmp_buf[16];/* IBM RT */ 

typedef int jmp_buf[58];/* MC68K */ 

typedef int jmp_buf[29];/* Intel I860 */ 
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typedef struct {        /* Intel 80x86 */ 

        unsigned j_sp; 

        unsigned j_ss; 

        unsigned j_flag; 

        unsigned j_cs; 

        unsigned j_ip; 

        unsigned j_bp; 

        unsigned j_di; 

        unsigned j_es; 
        unsigned j_si; 

        unsigned j_ds; 

        unsigned char st1[10], st2[10]; 
} jmp_buf[1]; 

These definitions indicate a context is simply some or all of the general-purpose register set, including the 

program counter, stack pointer, and processor status flags.  Some also store information about the floating-point 

processor's state.  Note the third case, which involves an array of only one element.  C permits such a construct 

although it is rarely useful. 

Exercise 12-1: Inspect your implementation's definition of the type jmp_buf.  Using the 

documentation set and any information provided in the setjmp.h header, determine just what is 

saved when setjmp is called. 

12.4 Miscellaneous Issues 

1. If the value of the second argument to longjmp is 0, it is ignored and 1 is used instead so that a direct call 

to setjmp, which returns 0, cannot be confused with longjmp's returning through setjmp with a value 

of 0. 

2. We should perform a longjmp only back up the program call tree, not across its branches.  Also, the 

longjmp call must always follow on the same level as, or be below in level to, the setjmp call. 

Undefined Behavior: If longjmp attempts to restore to a context that was never saved by 

setjmp. 

Undefined Behavior: If longjmp attempts to restore to a context and the parent function, which 

called setjmp to save that context initially, has terminated. 

Undefined Behavior: If longjmp is invoked from a nested signal handler. 
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