

Advanced

Programming

in JavaTM

Rex Jaeschke

Advanced Programming in Java

ii © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. All rights reserved.

Edition: 3.0 (matches Java 11)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and

articles.

The information in this book is subject to change without notice, and should not be construed as a commitment

by the author or the publisher. Although every precaution has been taken in the preparation of this book, the

author and the publisher assume no responsibility for errors or omissions.

Java is a trademark of Oracle.

The training materials associated with this book are available for license. Interested parties should contact the

author.

Please address comments, corrections, and questions to the author, Rex Jaeschke, at rex@RexJaeschke.com.

mailto:rex@RexJaeschke.com

Table of Contents

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. iii

Preface v

Reader Assumptions ... v
Source Code, Exercises, and Solutions .. v
The Java Development Kit ... v
Acknowledgments .. vi

1. Threads .. 7

1.1 Introduction ... 7
1.2 Creating Threads .. 8
1.3 Synchronized Methods .. 12
1.4 Synchronized Statements .. 14
1.5 Other Forms of Synchronization .. 17
1.6 Managing Threads ... 21
1.7 Thread Groups ... 22
1.8 The Runnable Interface ... 24
1.9 volatile Fields ... 25
1.10 Thread-Local Storage ... 27

2. Object Serialization .. 32

2.1 Introduction ... 32
2.2 Serializing Objects that Contain References .. 38
2.3 Handling Multiple References ... 42
2.4 Customized Serialization .. 44
2.5 Identifying the Fields to be Serialized .. 46
2.6 Class Evolution and Versioning .. 48
2.7 Miscellaneous Features ... 51

2.7.1 The Externalizable Interface .. 51

3. Sockets .. 53

3.1 Introduction ... 53
3.2 Server Sockets .. 53
3.3 Client Sockets ... 56
3.4 Serialization over Sockets .. 58
3.5 Networking .. 61
3.6 Miscellaneous Issues ... 61

4. Cloning Objects .. 63

4.1 Copying by Constructor ... 63
4.2 Class Cloning .. 64
4.3 The Method clone ... 65
4.4 Using Object.clone ... 66
4.5 Cloning Arrays .. 69
4.6 Creation without Construction .. 71
4.7 Miscellaneous Issues ... 73

5. Documentation Comments ... 75

5.1 Introduction ... 75
5.2 A Detailed Example .. 75
5.3 javadoc Tags ... 86
5.4 javadoc Tool Reference .. 87
5.5 Doclets ... 87
5.6 javadoc and Serialization .. 87

Advanced Programming in Java

iv © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

6. Java Archives ... 92

6.1 Introduction ... 92
6.2 JAR Files vs. ZIP Files .. 93
6.3 Package java.util.zip ... 93
6.4 Package java.util.jar ... 93

Annex A. Operator Precedence ... 94

Annex B. Java Language Keywords .. 97

Index 101

Preface

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. v

Preface

This text covers a number of more advanced Java topics most of which were introduced in JDK1.1. The material is

not hardware or operating system-specific.

Reader Assumptions

To fully understand and exploit the material, you should be conversant with the following concepts and the syntax

required to express them in Java:

• Basic Language Elements

• Looping and Testing

• Methods

• References, Strings, and Arrays

• Classes

• Inheritance

• Exception handling

• Input and Output

• Packages

• Interfaces

Source Code, Exercises, and Solutions

The programs shown in the text are provided on disk in a directory tree named source, where each chapter has

its own subdirectory.

Each chapter contains exercises, some of which have the character * following their number. For each exercise so

marked, a solution is provided on disk in a directory tree named labs, in which each chapter has its own

subdirectory.1 Exercises that are not so marked have no general solution and require experimentation or research

in an implementation's documentation. Numerous exercises contain a statement of the form "(See lab file

xx.java.)". This indicates the corresponding solution or test file in the labs subdirectory.

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler

gives you each error or why a program fails at run time.

The Java Development Kit

The initial production release of Java was the Java Development Kit (JDK) version 1.0. Versions 1.1 through 1.5

contained numerous bug fixes, and language and library enhancements. Over the years, the numbering system

changed, with 1.6 being known as Java 6. Then came editions 7, 8, 9, 10, and 11. The latest version can be

downloaded from Oracle’s website.

While the language has remained very stable, along the way, several features were added along with numerous

new packages and classes and new methods to existing classes. Also, some existing method names have been

1 The solutions are only available to licensees of these materials when they are used in formal training scenarios.

Advanced Programming in Java

vi © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

changed. In these latter cases, the old names continue to be acceptable, but are flagged by the compiler as

deprecated, meaning that support for them might well be removed in future versions. If your compiler issues such

a warning, consult the JDK on-line documentation to find the recommended replacement.

From an internationalization (I18N) viewpoint, one of the most significant additions made by V1.1 was the

completion of support for dealing with non-US, non-English environments, including those involving very large

alphabets and non-Latin writing systems.

Acknowledgments

Many thanks to those people who reviewed all or part of this book. In particular, students in my Java seminars

provided useful feedback and located numerous typographical errors.

Rex Jaeschke, March 2019

1. Threads

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 7

1. Threads

Java supports the ability to create multiple threads of execution within a single program. In this chapter, we'll see

how threads are created and synchronized.1 We'll also see how shared variables can be guarded against

compromise during concurrent operations.

1.1 Introduction

A thread is an individual stream of execution as seen by the processor, and each thread has its own register and

stack context. The run-time environment executes only one thread at a time. The execution of a thread is

interrupted when it needs resources that are not available, it is waiting for an operation such as an I/O to

complete, or if it uses up its processor time slice. When the processor changes from executing one thread to

another, this is called context switching. By executing another thread when one thread becomes blocked, the

system allows processor idle time to be reduced. This is called multitasking.

When a program is executed, the system is told where on disk to get instructions and static data. A set of virtual

memory locations, collectively called an address space is allocated to that program, as are various system

resources. This runtime context is called a process. However, before a process can do any work, it must have at

least one thread. When each process is created, it is automatically given one thread, called the primary thread.

However, this thread has no more capability than other threads created for that process; it just happened to the

first thread created for that process. The number of threads in a process can vary at runtime, under program

control. Any thread can create other threads; however, a creating thread does not in any sense own the threads

it creates; all threads in a process belong to the process as a whole.

The work done by a process can be broken into subtasks with each being executed by a different thread. This is

called multithreading. Each thread in a process shares the same address space and process resources. When the

last remaining thread in a process terminates, the parent process terminates.

Why have more than one thread in a process? If a process has only one thread, it executes serially. When the

thread is blocked, the system is idle if no other process has an active thread waiting. This may be unavoidable if

the subtasks of the process must be performed serially; however, this is not the case with many processes.

Consider a process that has multiple options. A user selects some option, which results in lots of computations

using data in memory or a file and the generation of a report. By spawning off a new thread to perform this work,

a process can continue accepting new requests for work without waiting for the previous option to complete. And

by specifying thread priorities, a process can allow less-critical threads to run only when more-critical threads are

blocked.

Once a thread has been dispatched, another thread can be used to service keyboard or mouse input. For example,

the user might decide that a previous request is not the way to go after all, and wishes to abort the first thread.

This can be done by selecting the appropriate option on a pull-down menu and having one thread stop the other.

Another example involves a print spooler. Its job is to keep a printer busy as much as possible and to service print

requests from users. The users would be very unhappy if the spooler waits until a job had completed printing

before it started accepting new requests. Of course, it could periodically stop printing to see if any new requests

1 It is important to note that Java does not support synchronization of threads in different programs.

Advanced Programming in Java

8 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

were pending (this is called polling), but that wastes time if there are no requests. And if the time interval

between polls is too long, there is a delay in servicing requests. If it is too short, the thread spends too much time

polling. Why not have the spooler have two threads: one to send work to the printer, the other to deal with

requests from users. Each runs independent of the other, and when a thread runs out of work, it either

terminates itself or goes into an efficient state of hibernation.

When dealing with concurrently executing threads, we must understand two important aspects: atomicity and

reentrancy.

An atomic variable or object is one that can be accessed as a whole even in the presence of asynchronous

operations that access the same variable or object. For example, if one thread is updating an atomic variable or

object while another thread reads its contents, the logical integrity of those contents cannot be compromised—

the read will get either the old or the new value, never part of each. Normally, the only things that can be

accessed atomically are those having types supported atomically in hardware, such as bytes and words. All the

primitive types in Java except long and double are guaranteed to be atomic. (These two might also be atomic

for a given implementation, however, that's not guaranteed across implementations.) Clearly a Point object is not

atomic; it has two parts, an x- and a y-coordinate, and a writer of a Point's value could be interrupted by a reader

to that Point, resulting in the reader getting the new x and old y, or vice versa. Similarly, arrays cannot be

accessed atomically. Since most objects cannot be accessed atomically, we must use some form of

synchronization to ensure that only one thread at a time can operate on certain objects. For this reason, Java

assigns each object, array, and class a synchronization lock.

A reentrant method is one that can be executed in parallel safely by multiple threads of execution. When a thread

begins executing a method, all data allocated in that method comes either from the stack or from the heap. In

any event, it's unique to that invocation. If another thread begins executing that same method while the first

thread is still working there, each thread's data will be kept separate. However, if that method accesses variables

or files that are shared between threads, it must use some form of synchronization.

1.2 Creating Threads

In the following example (see directory Th01a), the primary thread creates two other threads, and the three

threads run in parallel without synchronization. No data is shared between the threads and the process

terminates when the last thread terminates:

public class Th01a extends Thread

{
/*1*/ public Th01a(String threadName)

 {

/*2*/ super(threadName);

 }

/*3*/ public Th01a()

 {

 }

1. Threads

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 9

/*4*/ public void run()

 {

 int i, j;

 for (i = 0, j = 0; i <= 50000; ++i, ++j)

 {

 if (i % 10000 == 0)

 {

 System.out.println(getName() + ": i = " +
 i + ", j = " + j);

 }

 }

 System.out.println(getName() + " thread terminating");

 }

 public static void main(String[] args)

 {

/*5*/ Th01a t1 = new Th01a("t1");

/*6*/ Th01a t2 = new Th01a();

/*7*/ t1.start();
/*8*/ t2.start();

/*9*/ System.out.println("Primary thread terminating");

 }
}

Let's begin by looking at the first executable statement in the program, that in case 5. Here we create a new

thread object of type Th01a, a user-defined class that extends the library class Thread. Apart from the static

method main, that class has two constructors, one instance method, run, and no fields. We call the constructor

taking a string argument and pass it our name for this thread. The spelling of this name is our choice and has no

utility outside of our ability to set, retrieve, and display it. The constructor defined in case 1 is called and it simply

passes this string onto its superclass constructor in case 2, where it is stored in some field hidden in the base

object.

In case 6, we call the constructor taking no arguments, the one defined in case 3. Even though this constructor

does nothing, we must define it; the compiler only creates a default constructor for a class that has no

constructors explicitly defined. The default name given to the resulting thread created by the JDK execution

environment has the form Thread-n, where n is an integer.1

At this stage, two thread objects have been constructed; however, no new threads have yet been created. At this

stage, these threads are inactive. To make a thread active, we must call start, as shown in cases 7 and 8. This

method starts a new thread executing by calling its run method. (Calling start on a thread that is already active

results in an exception of type IllegalThreadStateException.) Since we have not defined a start method

in Th01a, the one defined in its superclass, Thread, is used. The version of run defined in class Thread does

nothing so we must override it in class Th01a giving it the signature as shown in case 4. This method is the main

1 Some implementations start thread numbers at 0, others with 1.

Advanced Programming in Java

10 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

method for the new thread, and since every thread of type Th01a starts execution with the same method, it and

all the methods it calls, had better be re-entrant.

The run method loops, and every 10,000 iterations, it displays the values of its local variables. Since each thread

that executes run gets its own set of these variables, the two threads don't adversely affect each other.

All three threads write to standard output and as we can see from the following example, the output from the

threads is intertwined:

Primary thread terminating
t1: i = 0, j = 0

t1: i = 10000, j = 10000

Thread-0: i = 0, j = 0

Thread-0: i = 10000, j = 10000

Thread-0: i = 20000, j = 20000

t1: i = 20000, j = 20000
t1: i = 30000, j = 30000

t1: i = 40000, j = 40000

Thread-0: i = 30000, j = 30000

Thread-0: i = 40000, j = 40000

Thread-0: i = 50000, j = 50000

Thread-0 thread terminating

t1: i = 50000, j = 50000
t1 thread terminating

Of course, the output might be ordered differently on subsequent executions. Here's the output from another

run:

Primary thread terminating

t1: i = 0, j = 0

t1: i = 10000, j = 10000

t1: i = 20000, j = 20000

Thread-0: i = 0, j = 0

Thread-0: i = 10000, j = 10000

Thread-0: i = 20000, j = 20000

t1: i = 30000, j = 30000
t1: i = 40000, j = 40000

t1: i = 50000, j = 50000

t1 thread terminating

Thread-0: i = 30000, j = 30000

Thread-0: i = 40000, j = 40000

Thread-0: i = 50000, j = 50000
Thread-0 thread terminating

1. Threads

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 11

In both sets of output, we see that the primary thread terminated before either of the other two threads started

running. This demonstrates that although the primary thread was the parent of the other threads, the lifetimes of

all three threads are unrelated.1

Although our version of run in this example is trivial, that method can call any other method to which it has

access.

If we want different threads to start execution with different run methods, we must define them to have different

classes. Although the following program (see directory Th01b, which is a version of Th01a) has only one run

method, we can see how the thread support can be moved to a class separate from the application, thus allowing

us to have multiple classes, each with their own run method:

class MyThread extends Thread

{
 public MyThread(String threadName)

 {

 super(threadName);

 }

 public MyThread()

 {

 }

 public void run()

 {

 int i, j;

 for (i = 0, j = 0; i <= 50000; ++i, ++j)

 {

 if (i % 10000 == 0)

 {

 System.out.println(getName() + ": i = " +

 i + ", j = " + j);

 }

 }

 System.out.println(getName() + " thread terminating");

 }

}

1 We can make the life of a child thread be dependent on that of its parent by making the child a daemon thread, as we shall
see later.

Advanced Programming in Java

12 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

public class Th01b

{

 public static void main(String[] args)

 {

 MyThread t1 = new MyThread("t1");

 MyThread t2 = new MyThread();

 t1.start();

 t2.start();
 System.out.println("Primary thread terminating");

 }
}

1.3 Synchronized Methods

In the following example (see directory Th02), we have two threads accessing the same Point. One of them

continually sets its x- and y-coordinates to some new value while the other retrieves these values and displays

them:

public class Point
{

 private int x;

 private int y;

 public Point()

 {

 x = 0;

 y = 0;

 }

/*1*/ public synchronized void move(int xor, int yor)
 {

 x = xor;

 y = yor;

 }

/*2*/ public synchronized String toString()
 {

 return "(" + x + "," + y + ")";

 }

}

public class Th02 extends Thread
{

 private Point pnt;

 private boolean mover;

1. Threads

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 13

 public Th02(boolean isMover, Point p)

 {

 mover = isMover;

 pnt = p;

 }

 public void run()

 {

 if (mover)
 {

 for (int i = 1; i <= 10000000; ++i)

 {

/*3*/ pnt.move(i, i);

 }

 }
 else

 {

 for (int i = 1; i <= 10000000; ++i)

 {

 if (i % 2000000 == 0)

 {
/*4*/ System.out.println(pnt); // calls toString

 }

 }

 }

 }

 public static void main(String[] args)

 {

 Point p = new Point();

 Th02 t1 = new Th02(true, p);

 Th02 t2 = new Th02(false, p);

 t1.start();

 t2.start();

 }
}

Even though both threads start executing the same run method, by passing a value to their constructors, we can

make each thread behave differently.

The potential for conflict arises out of the fact that one thread can be calling move in case 3 while the other is

(implicitly) calling toString in case 4. Since both access the same Point, without synchronization, move might

update the x-coordinate, but before it can update the corresponding y-coordinate, toString runs and displays a

mismatched coordinate pair. When these methods are not synchronized, if we run the program often enough,

eventually we'll likely see mismatched output; for example:

Advanced Programming in Java

14 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

(2479893,2479893)

(4131691,4131690) // mismatch

(5774640,5774640)

(7363071,7363071)

(10000000,10000000)

(2334280,2334280)

(3987228,3987228)

(5589142,5589142)
(7235212,8842648) // mismatch
(10000000,10000000)

When the methods are synchronized by declaring them synchronized, as shown in cases 1 and 2, the

coordinate pairs always match.

With synchronization, if move is called to operate on the same Point as toString, move is blocked until

toString is completed, and vice versa. As a result, the methods spend time waiting on each other whereas

without synchronization, they both run as fast as possible.

By declaring a method synchronized, we ensure it enables one such method from that class to operate on a

given object of that class's type at any one time. Of course, an unsynchronized method in that class pays no mind

to what any of its synchronized siblings are doing, so we must be careful to make all methods synchronized as

appropriate. Synchronized methods that are operating on different objects do not wait on each other. The lock

placed on all the instance methods when a synchronized method gets control stays in place until that method

returns normally or as the result of an exception's being thrown. Therefore, the lock is in place while that method

calls any and all other methods.

Constructors don't need to be synchronized; as their objects are just being created, no other thread is yet able to

access them.

If a class method (rather than an instance method) is declared synchronized, that attribute applies to the lock

on the class as a whole. Specifically, only one synchronized class method for a given class can execute at a time.

Synchronization of class methods and instance methods is quite separate.

The synchronized attribute is not part of the signature of a method; that is, when overriding a synchronized

method, we need not make the new method synchronized, and vice versa.

A synchronized method can call another synchronized method for the same object since it already has a lock on

that object. In this case, the lock count is simply increased; it must decrease to zero before that object can be

operated on by another synchronized method in another thread.

It is the programmer's responsibility to avoid a deadlock, that situation when thread A is waiting on thread B, and

vice versa.

Exercise 1-1*: Modify Th02.java such that it contains four classes: Point, MoveThread,

PrintThread, and a main application class, where MoveThread and PrintThread each have

their own run methods. (See lab directory Lbth01.)

1.4 Synchronized Statements

Consider a method that contains 25 statements, only three consecutive ones of which really need

synchronization. If we make the whole method synchronized, we'll be locking out resources longer than we really

Advanced Programming in Java

32 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

2. Object Serialization

Most useful programs depend on information of a more permanent nature than that generated during a single

execution. For example, programs that access an inventory typically query (and possibly update) one of more

related data files. The lives of such "master files" transcend that of the execution of any of the application

programs that use them. Other applications involve the communication of messages between separate programs,

often referred to as client and server. While the life of a message is often much shorter than that of a database

record, both cases involve the use of some data format external to the programs that manipulate them.

In this chapter, we'll see how Java objects and primitives can be converted into some external form suitable for

use in file storage or for transmission during inter-program communication. The process of converting to some

external form is known as serialization while that of converting back again is known as deserialization. Support for

serialization was introduced with JDK1.1 and was expanded significantly in JDK1.2/Java 2.

2.1 Introduction

Consider the following example (see directory Sr01) which writes a number of objects and primitives to a disk file,

closes that file, and then opens that file and reads them back into memory again:

import java.io.*;

import java.util.Date;

public class Sr01

{

 public static void main(String[] args)

 {

 // Serialize data to a file.

 int[] intArray = {10, 20, 30};

 float[][] floatArray = {
 {1.2F, 2.4F},

 {3.5F, 6.8F, 8.4F},

 {9.7F}

 };

 String nullString = null;

 try

 {

/*1*/ FileOutputStream fos = new FileOutputStream("Sr01.ser");

/*2*/ ObjectOutputStream oos = new ObjectOutputStream(fos);

/*3*/ oos.writeObject("Hello");
/*4*/ oos.writeObject(new Date());

/*5a*/ oos.writeObject(intArray);

/*5b*/ oos.writeObject(floatArray);

2. Object Serialization

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 33

/*6*/ oos.writeObject(nullString);

/*7*/ oos.writeBoolean(true);

/*8*/ oos.writeInt(1000);

/*9*/ oos.writeInt(2000);

/*10*/ oos.writeFloat(1.23456789F);

/*11a*/ oos.close();

/*11b*/ fos.close();

 }
 catch (IOException e)

 {

 System.out.println("Output stream error");

 e.printStackTrace();

 System.exit(1);

 }

In cases 1 and 2, we simply create a new file and connect an output stream to it; however, the stream is of a

special kind, namely ObjectOutputStream. A stream of this kind writes primitive values and objects to an

OutputStream. Later on, these primitives and objects can be read using an ObjectInputStream, as we shall

see.

Class ObjectOutputStream implements the interface OutputObject, which, in turn, extends the interface

DataOutput. The latter declares a family of methods for performing output of primitive types, while the former

extends that interface to include objects. The methods they declare are as follows:

Table 2-1: Interface ObjectOutput's Methods

Name Purpose

close Closes the stream

flush Flushes the stream

write Writes out one or more bytes

writeObject Write out an object

Table 2-2: Interface DataOutput's Methods

Name Purpose

write Writes out one or more bytes

writeBoolean Writes out a boolean

writeByte Writes out a byte

writeBytes Writes out a String

Advanced Programming in Java

34 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

Name Purpose

writeChar Writes out a char

writeChars Writes out a String

writeDouble Writes out a double

writeFloat Writes out a float

writeInt Writes out an int

writeLong Writes out a long

writeShort Writes out a short

writeUTF Writes out a String in UTF format

writeObject can be used to output any object or array type, as can be seen in cases 3–6. The format of the

output is of no importance to the programmer (although it is documented by Sun/Oracle1); all he cares about is

that the reverse process will get those same values back. Primitive values are written out using their

corresponding write methods as shown in cases 7–10. These values are written in binary just as they are

represented in memory.

The calls to close in case 11 involve an implicit call to flush.

The class ObjectInputStream is used to read primitive values and objects from an InputStream. Class

ObjectInputStream implements the interface InputObject, which, in turn, extends the interface

DataInput. The latter declares a family of methods for performing input of primitive types, while the former

extends that interface to include objects. The methods they declare are as follows:

Table 2-3: Interface ObjectInput's Methods

Name Purpose

available Number of bytes that can be read without

blocking

close Closes the stream

read Reads in one or more bytes

readObject Read out an object

skip Skips one or more bytes

1 Refer to the JDK documentation set for the web location of the serialization specification.

2. Object Serialization

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 35

Table 2-4: Interface DataInput's Methods

Name Purpose

readBoolean Reads in a boolean

readByte Reads in a byte

readChar Reads in a char

readDouble Reads in a double

readFloat Reads in a float

readFully Reads one or more bytes

readInt Reads in an int

readLong Reads in a long

readShort Reads in a short

readUnsignedByte Reads in a byte as an unsigned value

readUnsignedShort Reads in a short as an unsigned value

readUTF Reads in a String in UTF format

skipBytes Skips a given number of bytes

Here then is the code that deserializes the data from the file created above:

 // Deserialize data from a file.

 try

 {

 FileInputStream fis = new FileInputStream("Sr01.ser");

 ObjectInputStream ois = new ObjectInputStream(fis);

The source continues, with each fragment being followed by the output it produced:

/*12*/ String text = (String)ois.readObject();
 System.out.println("String >" + text + "<");

The output produced is:

String >Hello<

Advanced Programming in Java

36 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

readObject reads and returns the next object in the input stream, as a reference to type Object. Since we

assign the returned value to a reference to String, an explicit cast is needed. If the type of the actual object read

is not compatible with that to which it is being assigned, an exception of type ClassCastException is thrown.

It is worth noting that deserialization creates new objects; it cannot overwrite an object that already exists in a

program. Note, however, that while readObject behaves somewhat like a constructor, no constructor is actually

called.

/*13*/ Object date = ois.readObject();
 System.out.println("Date >" + date + "<");

The output produced is:

Date >Mon Feb 18 16:19:50 EST 2019<

In case 13, we do not need to cast to type Date explicitly, since the destination is of type Object. In any event,

the correct version of toString will be called because date's runtime type is really Date, not Object.

/*14a*/ int[] newIntArray = (int[])ois.readObject();

 for (int j = 0; j < newIntArray.length; ++j)

 {

 System.out.println("newIntArray[" + j + "] = "

 + newIntArray[j]);
 }

The output produced is:

newIntArray[0] = 10

newIntArray[1] = 20
newIntArray[2] = 30

The process for deserializing an array is as we should expect.

/*14b*/ float[][] newFloatArray = (float[][])ois.readObject();

 for (int j = 0; j < newFloatArray.length; ++j)

 {
 System.out.print("newFloatArray["

 + j + "][0] -> [" + j + "]["

 + newFloatArray[j].length + "] = ");

 for (int k = 0; k < newFloatArray[j].length; ++k)

 {

 System.out.print(" " +
 newFloatArray[j][k]);

 }

 System.out.println();

 }

The output produced is:

newFloatArray[0][0] -> [0][2] = 1.2 2.4

newFloatArray[1][0] -> [1][3] = 3.5 6.8 8.4
newFloatArray[2][0] -> [2][1] = 9.7

2. Object Serialization

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 37

The code continues:

/*15*/ System.out.println("Bytes available = "

 + ois.available());

 String str = (String)ois.readObject();

 System.out.println("String >" + str + "<");

The output produced is:

Bytes available = 0
String >null<

available returns the number of bytes that can be read without blocking; however, zero is returned if the next

thing in the input stream is an object. A return value of non-zero indicates that many bytes of contiguous

primitive data exist in the input stream at this point.

/*16*/ System.out.println("Bytes available = "

 + ois.available());

 boolean b = ois.readBoolean();
 System.out.println("boolean >" + b + "<");

The output produced is:

Bytes available = 13
boolean >true<

Once all the objects have been read, 13 bytes of primitives remain, in the following order: 1 1-byte boolean, 2 4-

byte ints, and 1 4-byte float. (Of course, objects and primitives can be interspersed as the programmer wishes;

there is no need for primitives to be grouped together.)

 System.out.println("Bytes available = "

 + ois.available());
 System.out.println("Skipping 4 bytes");

/*17*/ ois.skipBytes(4);

The output produced is:

Bytes available = 12
Skipping 4 bytes

Once the 1-byte boolean has been read, only 12 bytes remain, and we skip 4 of those (that correspond exactly to

the first int) by calling skipBytes. When skipping, we must be careful; for example, if we skip to a location that

is not the start of a primitive or object value, we can easily get a bogus value returned. If we call a primitive-type

read method and there are insufficient contiguous primitive bytes remaining, an EOFException is thrown. If we

call readObject and the next byte belongs instead to a primitive value, an OptionalDataException is

thrown. (If the format of control information in the stream violates certain internal consistency checks, a

StreamCorruptedException exception is thrown.)

 System.out.println("Bytes available = "

 + ois.available());

/*18*/ int i = ois.readInt();
 System.out.println("int >" + i + "<");

Advanced Programming in Java

38 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

The output produced is:

Bytes available = 8
int >2000<

The code continues:

 System.out.println("Bytes available = "

 + ois.available());

/*19*/ float f = ois.readFloat();
 System.out.println("float >" + f + "<");

The output produced is:

Bytes available = 4
float >1.2345679<

The code continues:

 ois.close();

 fis.close();

 }

 catch (IOException e)

 {

 System.out.println("Input stream error");

 e.printStackTrace();

 System.exit(2);

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();

 System.exit(3);

 }

 }
}

Although this program performs both the serialization and deserialization of the same data set, these tasks are

often done in separate programs. Therefore, when data is being deserialized, the class file for each class whose

objects are being deserialized must be available at runtime. If it is not, a ClassNotFoundException is thrown.

2.2 Serializing Objects that Contain References

In the previous example, we wrote and read relatively simple object types. What about an object that contains

numerous references to other objects; how is that handled? Consider a dictionary of more than 20,000 words,

stored in a collection such that entries can be retrieved by key. JDK1.2/Java 2 provides such a class called

HashSet, which is used in the following example (see directory Sr02a):

2. Object Serialization

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 39

import java.io.*;

import java.util.*;

public class Sr02a

{

 public static void main(String[] args)

 {

/*1*/ HashSet set = new HashSet(21000);

 try

 {

 InputStream is = new FileInputStream("dictionary.txt");

 BufferedReader br =

 new BufferedReader(new InputStreamReader(is));

 String str;

 while ((str = br.readLine()) != null)

 {

/*2*/ set.add(str);

 }

 br.close();
 is.close();

 }

 catch (IOException e)

 {

 System.out.println("Input stream error");

 e.printStackTrace();

 System.exit(1);

 }

In case 1, we pre-allocate the HashSet to handle 21,000 entries. (This simply speeds up the process, as it does not

require reallocation during addition of a large number of entries.) Then in case 2, we read in a word, one per line,

from a text file, and add that word to the HashSet.

Once all of the words have been read in and added to the HashSet, it can be written out as one big object with

one simple call to writeObject, as shown in case 3 below:

Advanced Programming in Java

40 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

 System.out.println("Dictionary contains " + set.size()

 + " entries");

 try

 {

 FileOutputStream fos =

 new FileOutputStream("dictionary.ser");

 ObjectOutputStream oos = new ObjectOutputStream(fos);

/*3*/ oos.writeObject(set);

 oos.close();

 fos.close();

 }

 catch (IOException e)

 {
 System.out.println("Output stream error");

 e.printStackTrace();

 System.exit(1);

 }

 }
}

In a separate program (see directory Sr02b), we wish to read in this dictionary and perform lookups on it for each

word provided by the user, as follows:

import java.io.*;

import java.util.*;

public class Sr02b

{
 public static void main(String[] args)

 {

 HashSet set = null;

 try

 {
 FileInputStream fis

 = new FileInputStream("dictionary.ser");

 ObjectInputStream ois = new ObjectInputStream(fis);

/*1*/ set = (HashSet)ois.readObject();

 System.out.println("Dictionary contains " + set.size()

 + " entries");

 ois.close();

 fis.close();

 }

2. Object Serialization

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 41

 catch (IOException e)

 {

 System.out.println("Input stream error");

 e.printStackTrace();

 System.exit(1);

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();
 System.exit(2);

 }

 BufferedReader br = new BufferedReader(

 new InputStreamReader(System.in));

 String word;

 try

 {

 while (true)

 {

 System.out.print("Enter a word: ");
 word = br.readLine();

 if (word == null)

 {

 break;

 }

 System.out.println(word

 + (set.contains(word) ? "" : " not")

 + " found");

 }

 br.close();

 }

 catch (IOException e)

 {

 System.out.println("Input stream error");

 e.printStackTrace();

 System.exit(3);

 }

 }
}

Here's an example of some input and the corresponding output from this program:

Dictionary contains 20159 entries

Enter a word: house

house found

Enter a word: houses

houses not found

Advanced Programming in Java

42 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

Enter a word: brick

brick found

Enter a word: manly
manly not found

The important lesson here is that we can serialize and deserialize an object of arbitrary size and complexity, in a

single method call.

2.3 Handling Multiple References

It seems obvious that when we pass to writeObject a reference to an object, that a copy of the underlying

object is written; however, is that what is really happening? What if we write out an object that contains multiple

references to some other object, or we call writeObject twice, each time giving it a reference to the same

object? Do we really want multiple copies of the same object to be written? It is quite likely that we don't.

What really happens then is that the serialization process keeps track of each distinct object written out, assigning

it a unique handle. When the first reference to some object is passed to writeObject, the object is serialized

and written to the output stream. Then when subsequent calls are made with a reference to that same object,

only handle reference information is written out, allowing readObject to correctly return multiple references to

the same object during deserialization. (This process can be circumvented by calling

ObjectOutputStream:reset on the output stream; however, that is outside of the scope of this text.)

The following program (see directory Sr03) demonstrates this process:

import java.io.*;

/*1*/

class Employee implements Serializable { /* ... */ }

public class Sr03

{

 public static void main(String[] args)

 throws IOException, ClassNotFoundException

 {

 // Serialize data to a file.

 Employee emp1a = new Employee();

 Employee emp2a = new Employee();

 Employee emp3a = emp2a;

/*2a*/ System.out.println("emp1a == emp2a is " + (emp1a == emp2a));
/*2b*/ System.out.println("emp2a == emp3a is " + (emp2a == emp3a));

/*2c*/ System.out.println("emp1a == emp3a is " + (emp1a == emp3a));

3. Sockets

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 53

3. Sockets

It has become increasingly common for large applications to be broken down into a set of cooperating programs

that communicate with each other using some sort of communications protocol. These programs might run on

different machines, under different operating systems, and be written in different languages. They might also be

running on the same machine. In fact, these programs might even really be different threads in the same

program.

In this chapter, we will learn about sockets, the means by which Java programs can communicate with each

other.1 For the most part, we will be discussing communication between programs running on the same machine.

While communication across a network is indeed an important topic, this chapter is about inter-process

communication, not networking.

3.1 Introduction

Consider an application involving a database query facility. One program, called the server, waits for requests

from another program, called a client. When a request is received, the server executes the query and returns the

results (or perhaps an error message) to the client. In many cases, there will be numerous clients, all sending

queries to the same server at the same time, requiring the server to be a more sophisticated program than are

the clients.

While in some environments the server runs on a machine dedicated to that task, a server could simply be a

program running alongside numerous others, some of which are servers and/or clients in other applications. In

fact, if our database server needs access to files not resident on its own system, it may well be a client of a file

server on some other system. In fact, a single program might have a server thread and one or more client threads.

Therefore, we must be careful when using the terms "client" and "server". While they might convey a familiar

meaning in the abstract sense, they might be used quite differently in different physical implementations.

From a generic viewpoint then, a client is a consumer of services provided by a server, and a server can be a client

of some other service.

3.2 Server Sockets

Let's start by looking at a simple yet representative server program (see Sk01Server.java in directory Sk01). This

program waits for a client to send it a pair of integers. The server then adds these values together and sends the

result back to the client:

1 You might also be able to communicate with programs written in other languages too; however, that is outside the scope of
this text.

Advanced Programming in Java

54 © 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke.

import java.io.*;

import java.net.*;

class Sk01Server

{

 public static void main(String[] args)

 {

 int port;

 // port gets initialized somehow

 try

 {

/*1*/ ServerSocket ser = new ServerSocket(port);

/*2*/ Socket soc = ser.accept();
 System.out.println("New connection accepted");

Socket-related support is provided by the package java.net, so we import that.

In case 1, we define a variable of type ServerSocket and bind it to a specific port number. A port number is an

integer in the range 0–65535, where port numbers 0–1023 are reserved for special purposes. So, unless a system

is documented otherwise, port numbers 1024–65535 are available for use by application program servers. This

program gets its port number from the command line; however, the conversion code is irrelevant and is not

shown here.

Objects of type ServerSocket are only used by servers. Basically, the creation of an object of this type declares

that this server is open for communication on the given port number.

A port number of 0 tells the system to assign any available port. The server can then find out this port number by

calling getLocalPort. It can then make this available to clients via a file or some other mechanism, so they will

know which port number to use for connection requests.

If a security manager is present, the port number used is checked to see if we have permission for this operation.

Once a ServerSocket has been created, the server can listen using it, to see if any client wants to establish

communication. This is done in case 2, via the method accept. Once this method is called, the calling thread is

placed in an efficient wait state until a client connection request is detected for the given port. When that

happens, an object of type Socket is created and it is returned to the server. This Socket is the channel by which

the server and its new client can communicate.

A server can be connected to multiple clients at the same time. By default, a ServerSocket supports up to

50 concurrent client connections; however, that number can be specified when the ServerSocket is constructed.

(This capability is not shown here.)

By default, accept waits indefinitely; however, we can establish a wait limit in milliseconds by calling

setSoTimeout. A limit of zero means "wait indefinitely". If the time limit expires before a connect request is

seen, an exception of type InterruptedIOException is thrown. The wait limit can be obtained by calling

getSoTimeout.

3. Sockets

© 1999–2000, 2002, 2005, 2009, 2019 Rex Jaeschke. 55

/*3a*/ InputStream is = soc.getInputStream();

/*3b*/ DataInputStream dis = new DataInputStream(is);

/*3c*/ OutputStream os = soc.getOutputStream();
/*3d*/ DataOutputStream dos = new DataOutputStream(os);

The methods getInputStream and getOutputStream called in cases 3a and 3c, associate an input stream and

an output stream, respectively, to this Socket. We need both in this server, because we will both read from and

write to the client via this Socket. Of course, one-way communication is also possible. These low-level streams

are then associated with higher-level ones in cases 3b and 3d, allowing us to use the readInt and writeInt

methods in cases 4a, 4b, and 4c.

 try

 {

 int value1, value2;

 int result;

 while (true)
 {

/*4a*/ value1 = dis.readInt();

/*4b*/ value2 = dis.readInt();

 System.out.println("Received values "

 + value1 + " and " + value2);

 result = value1 + value2;

/*4c*/ dos.writeInt(result);

 System.out.println("Sent result " +

result);

 }
 }

The server loops indefinitely, reading pairs of integers, computing their sum, and returning the result back to the

client. When end-of-file is detected on the input stream (by the client having closed its end of the socket), an

exception of type EOFException is thrown, resulting in the closing of the Socket's I/O streams and the server's

sockets, in case 5. Then the server terminates.

/*5*/ catch (EOFException e)

 {
 dis.close();

 dos.close();

 soc.close();

 ser.close();

 }

 }

