

Programming

in JavaTM

Rex Jaeschke

Programming in Java

ii

© 1997–2000, 2005, 2009, 2019 Rex Jaeschke. All rights reserved.

Edition: 5.0 (matches Java 11)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means whatsoever, except in the case of brief quotations embodied in critical reviews and

articles.

The information in this book is subject to change without notice, and should not be construed as a commitment

by the author or the publisher. Although every precaution has been taken in the preparation of this book, the

author and the publisher assume no responsibility for errors or omissions.

Java is a trademark of Oracle.

The training materials associated with this book are available for license. Interested parties should contact the

author.

Please address comments, corrections, and questions to the author, Rex Jaeschke, at rex@RexJaeschke.com.

mailto:rex@RexJaeschke.com

 Table of Contents

iii

Preface vi

Java's Design Goals .. vii
Reader Assumptions ... vii
Limitations .. viii
Source Code, Exercises, and Solutions ... viii
The Java Development Kit .. ix
Acknowledgments .. ix

1. The Basics .. 1

1.1 Basic Program Structure .. 1
1.2 Java's Compilation Model .. 5
1.3 Identifiers ... 6
1.4 Introduction to Formatted Output .. 7
1.5 The Primitive Data Types ... 10

1.5.1 The boolean Type .. 10
1.5.2 The Integer Types .. 11
1.5.3 The Floating-Point Types ... 12

1.6 Literals.. 13
1.6.1 Boolean Literals ... 13
1.6.2 Character Literals ... 14
1.6.3 String Literals ... 14
1.6.4 Integer Literals ... 14
1.6.5 Floating-Point Literals .. 15

1.7 Enum Types .. 16
1.8 Operator Precedence... 17
1.9 Type Conversion .. 18
1.10 Introduction to Class Members ... 20

2. Looping and Branching ... 27

2.1 The while Statement ... 27
2.2 The for Statement .. 33
2.3 The for each Statement .. 36
2.4 The do/while Statement.. 37
2.5 The if/else Statement .. 37
2.6 The break Statement ... 40
2.7 The continue Statement ... 42
2.8 The Null Statement .. 42
2.9 The switch Statement ... 43

3. Methods .. 47

3.1 Introduction ... 47
3.2 Passing Arguments... 51
3.3 Recursion ... 52
3.4 Argument Type Matching .. 53
3.5 Overloaded Methods ... 54
3.6 Variable-Length Argument Lists .. 57
3.7 Generic Methods ... 57
3.8 Lambdas ... 59

4. References, Strings, and Arrays .. 63

4.1 Introduction ... 63

Programming in Java

iv

4.2 Sharing of Like Strings .. 68
4.3 Passing and Returning References .. 69
4.4 Allocating Memory for Objects .. 70
4.5 Releasing Allocated Memory ... 71
4.6 Arrays ... 73
4.7 Copying Arrays ... 81
4.8 Variable-Length Argument Lists .. 87
4.9 Primitive Wrapper Classes ... 88
4.10 Modifiable Strings .. 91
4.11 Static Initialization Blocks .. 94

5. Classes ... 95

5.1 Introduction ... 95
5.2 Class-Specific Methods .. 97
5.3 Data Hiding within a Class ... 100
5.4 this and That ... 104
5.5 Static Fields and Methods Revisited .. 106
5.6 Enumerated Types ... 109
5.7 Containment .. 112
5.8 Copying Objects ... 113
5.9 Instance Initialization Blocks .. 114
5.10 Inner Classes .. 116

5.10.1 Introduction ... 116
5.10.2 Static/Top-Level Classes .. 117
5.10.3 Inner Classes .. 118
5.10.4 Local Classes .. 118
5.10.5 Anonymous Classes ... 119

6. Inheritance .. 121

6.1 Introduction ... 121
6.2 The Is-A versus Has-A Test ... 122
6.3 Taking Advantage of Existing Classes .. 125
6.4 A Simple Class Hierarchy .. 127
6.5 Abstract Classes and Methods ... 131
6.6 Constructor Calls .. 134
6.7 Protected Members ... 135
6.8 Disabling Inheritance ... 136
6.9 Disabling Overriding .. 137
6.10 A Universal Base Class ... 139
6.11 Run-Time Type Checking ... 142
6.12 Enums and Inheritance .. 145
6.13 Boxing and Unboxing ... 147
6.14 Inheritance after the Fact .. 147
6.15 Interfaces ... 148
6.16 Generic Methods and Types .. 151

7. Exception Handling .. 155

7.1 Introduction ... 155
7.2 Catching Exceptions ... 156
7.3 Throwing Exceptions .. 158
7.4 Handling Families of Exception Types ... 163

 Table of Contents

v

7.5 Catching Unexpected Exceptions .. 164
7.6 Try with Resources ... 164
7.7 A Final Note ... 165

8. Packages .. 167

8.1 Introduction ... 167
8.2 Public Classes and Package-Private Members ... 168
8.3 Standard Library Packages ... 169
8.4 Creating Packages .. 171
8.5 Package Naming Conventions ... 172

9. Input and Output ... 175

9.1 Introduction ... 175
9.2 The Basic I/O Classes ... 177
9.3 File I/O ... 182
9.4 Array I/O .. 183
9.5 String I/O .. 185
9.6 Typed Unformatted I/O ... 186
9.7 Formatted I/O .. 188
9.8 Filters ... 191
9.9 Random Access I/O .. 191
9.10 File and Directory Operations .. 193
9.11 Miscellaneous Issues ... 196

Annex A. Operator Precedence ... 199

Annex B. Java Language Keywords .. 203

Annex C. The Program Build Process ... 207

C.1 Compilation.. 207
C.2 Execution ... 208
C.3 Class File Location .. 209
C.4 Miscellaneous Issues ... 209

Annex D. Formatting and Parsing .. 211

D.1 Formatting Numbers ... 212
D.2 Parsing Numbers .. 220
D.3 printf Format Specifiers ... 221

D.3.1 Argument Index ... 222
D.3.2 Flags ... 222
D.3.3 Width ... 224
D.3.4 Precision .. 224
D.3.5 Specifiers ... 225

Index 229

Programming in Java

vi

Preface

Welcome to the world of Java. Throughout this book, we will look at the statements and constructs of the Java

programming language as defined by the definitive text "The Java Language Specification", by James Gosling, et al.

Each statement and construct will be introduced by example with corresponding explanations, and except where

errors are intentional, the examples will be complete programs or subroutines that are error-free. I encourage

you to run, and modify these examples, because the only realistic way to master a language is to write programs

in it, run them, and debug them.

All program examples have been taken directly from the manuscript text and tested. While almost all material

presented will be processor- and operating system-independent, system-specific aspects will be mentioned where

applicable.

This book was written with teaching in mind and evolved from an earlier series on C and C++. It was written for

use both in a classroom environment as well as for self-paced learning.

Java is a robust, general-purpose, high-level language that supports object-oriented programming (OOP). From a

grammatical viewpoint, Java is a relatively simple language having only about 50 keywords. Because of the power

of the basic statements and constructs, and the fact that the programmer can effectively extend the language by

using callable methods while still maintaining portability, there really is no need for language extensions especially

considering the fact that Java supports calls to procedures written in other languages. There are numerous

commercial and shareware Java class libraries available, so when you look at other people's code, make sure you

understand whether it involves classes outside those defined in the Java specification.

Depending on their language backgrounds, programmers new to Java may initially find programs hard to read

because, traditionally, most code is written in lowercase. Lower- and uppercase letters are treated by the

compiler as distinct. In fact, Java language keywords must be written in lowercase. Keywords are also reserved

words.

If you have ever wondered what all those special punctuation marks on most keyboards are for, the answer may

well be "to write Java programs!" Java uses almost all of them for one reason or another and sometimes

combines them for yet other purposes. Java supports the 16-bit character set ISO 10646 UCS-2, commonly known

as Unicode, of which ASCII is a proper subset. (Character codes 0–127 represent the same characters in both sets.)

As such, it does not suffer from many of the difficulties faced by other languages that were designed primarily to

support a "USA-English" mode of programming.

Java encourages a structured, modular approach to programming using classes containing callable subroutines,

called methods. Classes can be compiled separately, with external references being resolved at runtime.

Java is an architecturally neutral language that when compiled, results in the generation of Java bytecode. This

bytecode is then interpreted by a Java Virtual Machine (JVM), which may be running on a different hardware

and/or operating system platform than the one on which the source was compiled.

Java lends itself to writing terse code. However, there is a fine (and subjective) line between writing code that is

terse and code that is cryptic. It is easy to write code that is unreadable and, therefore, unmaintainable. In fact,

that's what you will get by default. However, with care and a small dose of discipline, you can produce nicely

formatted code that is easy to read and maintain. But remember, good code doesn't happen automatically—you

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Java_virtual_machine

 Preface

vii

have to work at it. Throughout the book, I will make numerous comments and suggestions regarding style.

Perhaps the best advice I can give is "Remember that the poor fool who has to read your code in the future just

might be you!" Above all, be overt and be consistent.

Numerous "Tips" and "Style Tips" have been added throughout to highlight important suggestions. Considerable

attention has been paid to using and teaching a consistent, popular, and overt programming style. Both kinds of

tips are highlighted so they stand out. For example:

Tip: The simplest way to convert the value of an expression to its corresponding string

representation is to concatenate that expression with an empty string; for example, "" + 123

results in the string "123".

Style Tip: Use liberal amounts of white space to improve program readability. The compiler

discards all white space, so its presence has no effect on program execution. Apart from

separating tokens, white space exists solely for the benefit of the reader. If you can't read the

code, you surely won't be able to understand it.

Java is not all things to all people; nor does it claim to be. For many applications, other languages will do just fine.

In any event, compared to other high-level languages, Java is a relatively inexpensive language to learn and

master. It is certainly much less expensive to master—and far less error-prone—than C or C++.

Java's Design Goals

The Java language, library, and run-time environment were designed to deliver the following:

• Code reuse and reduced development effort via object-oriented programming support.

• Extremely broad portability by the elimination of implementation-defined and unspecified behavior, by

the use of an architecturally neutral language interpreted by a host-specific virtual machine.

• The specification of a standard GUI library.

• A comprehensive library including support for networking, Internet access, audio, database, and data

structures.

• Strong type checking.

• Support for threading.

• No unsafe constructs.

• Easy to learn, read, and write.

• Support for internationalization.

Reader Assumptions

I assume that you know how to use your particular text editor, Java compiler, and debugger. Comments on the

use of these utility programs will be limited to points of particular interest to the Java programmer.

To fully understand and exploit the material, you should be conversant with the following topics:

• The basic purpose of a compiler.

• Number system theory (such as binary and hexadecimal).

• Bit operations such as AND, inclusive-OR, exclusive-OR, complement, and left- and right-shift.

Programming in Java

viii

• Data representation.

• Communication between procedures by passing arguments and/or by returning a value.

• Use of single- and multi-dimensional arrays.

• Creation and use of sequential files and how to do formatted and unformatted I/O.

• Basic data structures such as linked lists.

Many of Java's more powerful capabilities, particularly exception handling, inheritance, and threads, require

advanced programming experience before they can be understood and exploited fully.

Despite the many similarities between Java and C/C++, you do not need to know either of these languages to use

this book. If you do know either or both, simply read quickly over those sections that seem familiar to you. I say,

"read quickly" rather than "skip" because you may well find that Java defines things more fully or a little

differently than do C and C++. For example, you might already "know all about the types int and long", but if

you skip the coverage on that topic, you'll miss learning that their actual size and representation is defined

absolutely by Java, unlike C/C++, in which these things are implementation-defined.

So, if you already know C++, the Java learning curve should be short and not too steep. If you know C but not C++,

you have all the OO stuff to learn as well. If you know some OO language other than C++, you'll already be familiar

with the OO concepts but not the syntax that is largely common to Java, C, and C++ (and C#). And if your

programming background is in some procedural language such as Pascal, FORTRAN, or BASIC, you'll need to read the

whole book closely and do all the exercises. As for those of you having only a COBOL background, you'll have some

catching-up to do with respect to thinking in binary versus decimal when it comes to data representation, as well

as the use of methods and their associated argument passing and value returning.

Limitations

This book covers almost all of the Java language. It also introduces the library of core classes. However, only a

small number of these classes are covered in detail. Others are mentioned in passing. The Java library contains so

many methods that books have been written about that subject alone.

For most of its early life, Java was used to implement applets, programs that execute under the control of a

browser, and that often are resident on a remote site on the world wide web. Later, implementations became

available that allowed programmers to write stand-alone programs called applications. This book makes almost

no mention of applets, browsers, or programming for the web—that is another whole series of Java-related

topics. Instead, this book is directed at teaching the Java language proper, by writing applications, since without a

thorough knowledge of the language, you will not be able to understand and implement other than very trivial

applets.

Applets, GUI, calling non-Java routines, threading, interprocess communications, and a number of other advanced

features are covered in separate texts.

Source Code, Exercises, and Solutions

The programs shown in the text are made available electronically in a directory tree named Source, where each

chapter—as well as each example within that chapter—has its own subdirectory.

Each chapter contains exercises, some of which have the character * following their number. For each exercise so

marked, a solution is provided on disk in a directory tree named Labs, in which each chapter has its own

 Preface

ix

subdirectory.1 Exercises that are not so marked have no general solution and require experimentation or research

in an implementation's documentation. Numerous exercises contain a statement of the form "(See

directory xx.)". This indicates the corresponding solution or test file in the Labs subdirectory.

You are strongly encouraged to solve all exercises in one section before continuing to the next. Also, invent your

own exercises as you go and be inquisitive; don't be afraid to experiment. Try to understand why the compiler

gives you each error or why a program fails at run time.

Refer to Annex C for a discussion of compilation and execution of Java applications.

The Java Development Kit

The initial production release of Java was the Java Development Kit (JDK) version 1.0. Versions 1.1 through 1.5

contained numerous bug fixes, and language and library enhancements. Over the years, the numbering system

changed, with 1.6 being known as Java 6. Then came editions 7, 8, 9, 10, and 11. The latest version can be

downloaded from Oracle’s website.

While the language has remained very stable, along the way, several features were added along with numerous

new packages and classes and new methods to existing classes. Also, some existing method names have been

changed. In these latter cases, the old names continue to be acceptable, but are flagged by the compiler as

deprecated, meaning that support for them might well be removed in future versions. If your compiler issues such

a warning, consult the JDK on-line documentation to find the recommended replacement.

From an internationalization (I18N) viewpoint, one of the most significant additions made by V1.1 was the

completion of support for dealing with non-US, non-English environments, including those involving very large

alphabets and non-Latin writing systems.

Acknowledgments

Many thanks to those people who reviewed all or part of this book. In particular, students in my introductory Java

seminars provided useful feedback and located numerous typographical errors.

Rex Jaeschke, February 2019

1 The solutions are only available to licensees of these materials when they are used in formal training scenarios.

1. The Basics

1

1. The Basics

In this chapter, we will learn about a number of fundamental constructs and language elements. The main topics

covered include basic program structure, user-defined names, basic formatted output, primitive data types,

literals, operator precedence, and type conversion.

1.1 Basic Program Structure

A correct source program is made up of an acceptable combination of tokens, where a token is the smallest

possible unit of source. Java has five different kinds of tokens: identifiers, keywords, literals, separators, and

operators.

For the most part, Java is a free-format language, and space between tokens is optional. However, in some cases,

something is needed between tokens, so they can be recognized the way they were intended. White space

performs this function. White space consists of one or more consecutive characters from the set: space,

horizontal tab, form feed, newline (the ASCII lf character), and return (the ASCII cr character). Typically, the return

and/or newline characters are entered by pressing the RETURN or ENTER key. An arbitrary amount of white space is

permitted before the first token, between any two adjacent tokens, or after the last token.

Let's look at the basic structure of a Java program (see directory Ba01):

/*---

Ba01.java - A sample Java program

In case 1 below, the text "Welcome to Java" is written to the

standard output device.

In case 2, the main method returns to its caller.

---*/

public class Ba01

{

 public static void main(String[] args) // start of program

 { // start of block

/*1*/ System.out.println("Welcome to Java");

/*2*/ return; // redundant
 } // end of block

}

The output produced is

Welcome to Java

There are several ways to write a comment. The first form involves both a comment-start and end delimiter,

represented by /* and */, respectively. These delimiters and all the characters contained between them are

ignored. This form of comment can span an arbitrary number of source lines.

Programming in Java

2

Note the unusual comments, /*1*/ and /*2*/, in the example above. Throughout this book, such comments are

used to give source lines pseudo-labels, so they can be referenced directly in the narrative. In production code,

this approach can also be used, as follows: A comment prior to a method provides a general introduction and

describes the steps used to implement the solution. By giving each step a label, we can place a comment

containing that label prior to the first statement that implements that step. For example, in the program above,

the introductory comment mentions case 1 (which corresponds to step 1), and the comment /*1*/ shows where

that step (or case) is implemented.

The second form is a line-oriented comment, begun by // and terminated by the end of that source line. Both

these forms of comment are treated as a single space allowing a comment to occur anywhere white space can be

used; that is, between any two adjacent tokens. Comments of the same form do not nest; however, a comment of

the form /* … */ can contain // as text, and vice-versa. A third form of comment (not shown here) is known as

a documentation comment.1

A Java program consists of one or more methods that can be defined in one or more source files (or compilation

units, as they are formally known). (A method corresponds to what some other languages refer to as a function, a

procedure, or a subroutine.) A program must contain at least one method, called main. This specially named

method indicates where the program begins execution.

Each method can have one or more modifiers; main has two: public and static. Names having the public

modifier are visible outside their parent class. We'll learn about the static modifier in §5. The keyword void

preceding the method name main indicates that this method does not return a value. Return values are discussed

in §3.1. For now, suffice it to say that the definition of main must always contain these three keywords, as shown.

The parentheses following the method name main surround that method's parameter list.2 The parentheses are

required, even if no arguments are expected. Although the argument passed to main is not used in this example,

it must be declared as shown. The meaning and purpose of this argument are discussed in §4.6.

The body of a method is enclosed within a pair of matching braces. All executable code resides within the body of

some method or other.3 Statements are executed in sequential order unless branching or looping statements

dictate otherwise.

A program terminates when it returns from main, either by dropping into the closing brace of that method—

which acts as an implicit return statement—or via an explicit return statement, as shown in case 2 above.4

As we can see, main is defined inside a block preceded by class class-name, where the name of the class is

Ba01, a somewhat arbitrary choice.5 Note that the class is declared as public. While this is permitted, it is not

necessary. We'll discuss this further in §8.2; however, for now, suffice it to say that if you declare a class to be

public, it must be contained in a source file whose name is exactly the same as that class, case included.

Every method must be defined inside some class or another. While a class has numerous attributes, the one of

importance here is namespace control. The name main is really qualified by its parent class, in this case Ba01. For

1 Documentation comments have the form /** ... */ and contain tags of the form @name, as well as text. These tags and the
program components they precede are recognized by the javadoc program, which uses them to produce program
documentation as a series of HTML files.
2 A method uses parameters to declare what it is expecting to be passed, via an argument list, at run time.
3 We'll see two exceptions to this requirement in §4.11 and §5.9.
4 A program can also be terminated from within any method by an explicit call to the library method System.exit.
5 Actually, this name was picked because this example is the first in the chapter entitled "Basics".

1. The Basics

3

that reason, when we wish to run this program, we must specify the name of the class that contains the main

method of interest, since each class can have such a method.

The call to method println in case 1 above, writes a line of text to the standard output device, automatically

adding a newline. As we can see, a string literal is delimited by double-quote characters. Note that we cannot call

println using that simple name; instead, we must specify that this method belongs to an object called out,

which, in turn, belongs to a class called System. We separate each of these names with the dot (.) member

selection operator. (Formatted I/O is discussed in §1.4.)

Style Tip: Use liberal amounts of white space to improve program readability. The compiler

discards all white space, so its presence has no effect on program execution. Apart from

separating tokens, white space exists solely for the benefit of the reader. If you can't read the

code, you surely won't be able to understand it.

We can write any given correct program in an infinite number of ways simply by using different amounts and

kinds of white space (including comments). There are very good, overt styles and very bad, cryptic styles. Then

there is the large and subjective gray area in between.

Style Tip: Be overt; pick a style that isn't too far outside the mainstream and stick with it. Above

all, be consistent. And remember, the style you develop when learning a language is the one with

which you will likely stay, so give some thought to programming style from the outset.

The style used in this book is very common. If you choose to adopt a different style, note that no matter how

great you think your particular style is, every minute you spend arguing about whose style is superior and why—

or worse yet, changing other people's code to your style—is generally time wasted. If the people on a multi-

person project cannot agree on a common style, the project manager should dictate one.

Exercise 1-1: What happens if you try to run a program that has no main method? Try omitting

main's argument list and/or one or more of the modifiers.

Exercise 1-2: Using /* and */, comment out a block of code that already contains comments of

that type, and see how your compiler reacts. What happens if you leave off the closing */ from a

comment?

Let's move on to the more common case of a program having multiple methods (see directory Ba03a):

public class Ba03a

{

 public static void main(String[] args)

 {

/*1*/ welcome();

 }

Programming in Java

4

 private static void welcome()

 {

 System.out.println("Welcome to Java");

 }
}

Java supports modularization via methods. Unlike some languages, in Java, method definitions cannot be nested;

that is, each method's definition must be outside the braces delimiting the definitions of all other methods. There

is no syntactic difference between main and any other Java method; they all have the same basic structure.

We call a method by using its name followed by a possibly empty argument list, as shown in case 1. The

parentheses used in the call represent the method invocation operator. Each statement must be terminated by a

semicolon separator. When method welcome terminates, control is returned to its caller; we learned earlier that

dropping into the closing brace of a method is an implicit return.

Like main, welcome does not return any value, so it too is declared using void. welcome must also have the

static modifier. Since this method need be visible only within its parent class, it has the modifier private.

Style Tip: Indent every line inside the body of a method definition by at least one tab. Also, line

up the opening and closing braces, one above the other, but not indented with the block they

delimit. This way, you can see the shape of the program at a glance by looking at the brace pairs,

and if you are interested in the details, you can quite easily see where they are.

Exercise 1-3: See how your compiler reacts to having one method defined inside another. (This

can easily happen if you forget the closing brace from the first method, and if you don't line up

your brace pairs, you can't easily see which one is missing.)

Exercise 1-4: What happens when you omit the semicolon from the end of a statement? Add an

extra one and see what happens.

Exercise 1-5: What happens if the keyword static is omitted from the definition of welcome?

Within a class, methods can be defined in any order; for example, the program Ba03b (which is not shown here)

defines welcome before main. Let's see how we can define each method in a separate class (see directory

Ba03c):

class Ba03c1

{

 public static void main(String[] args)

 {

/*1*/ Ba03c2.welcome();

 }
}

1. The Basics

5

class Ba03c2

{

 public static void welcome()

 {

 System.out.println("Welcome to Java");

 }
}

Note that the call to welcome in case 1 has been changed to Ba03c2.welcome. As we learned earlier, names

defined inside a class belong to that class, allowing different classes to contain methods by the same name. Since

welcome is defined in class Ba03c2, its parent class name is added to the method call. Note that welcome must

be public if it is to be accessed outside its parent class.

As we might expect, the classes can be defined in separate source files (see directory Ba03d):

// source file Ba03d1.java

public class Ba03d1

{

 public static void main(String[] args)

 {

 Ba03d2.welcome();

 }

}

// source file Ba03d2.java

public class Ba03d2

{

 public static void welcome()

 {

 }
}

All methods that belong to a given class must be defined in the same source file. There is no way to have

contributions to a single class from multiple source files. Therefore, the use of class names as prefixes is especially

important when working on large projects or when using the standard or class libraries. However, given their

simplicity, most examples in this text involve only one source file with all methods being defined in the same class.

1.2 Java's Compilation Model

Java's compilation model is different to that used by other mainstream compiled languages, which, typically,

generate a single object file from a source file, and where the name of the object file corresponds to that of its

source file. The end result of compiling a single Java source file is one or more .class files whose names

correspond exactly to the classes defined in that source file.

Consider the example above that involves the source files Ba03d1.java and Ba03d2.java. When Ba03d1.java is

compiled, the file Ba03d1.class is produced, not because that's the source file name, but because the only class in

that file is called Ba03d1 and the suffix .class was added. Similarly, when Ba03d2.java is compiled, the file

Ba03d2.class is produced.

Programming in Java

6

A source file can have any name, since that name is not used except by the compiler to locate the text to be

compiled. For example, the file Ba03c.java contains both of the classes Ba03c1.java and Ba03c2.java, yet what

comes out of the compiler are two class files, named Ba03c1.class and Ba03c2.class, respectively. So, the

distribution of classes among source files is not particularly relevant.

With the addition of enum types (§1.7) by JDK1.5, each enum type also compiles to its own class file.

To execute a Java application, we must tell the Java runtime system the name of the class to load, that contains

the main method at which we wish to begin executing the program. This allows us to have more than one main

method in a program, provided each is defined in a different class.

For a more detailed discussion of this topic, refer to Annex C.

1.3 Identifiers

One kind of token is an identifier, a name usually invented by the application programmer. Identifiers are used to

name variables, methods, and classes, among other things. Since keywords (such as public, static, void, and

return) are reserved, they cannot be used as identifiers.

An identifier can be spelled using the following characters: Upper- and lowercase letters, the decimal digits 0–9,

and the underscore (_);1 however, an identifier cannot begin with a digit. An identifier can be arbitrarily long, all

characters are significant, and case is distinct.

While we can spell identifiers using letters in either case, or combinations of upper- and lowercase, the

recommended style of naming variables and methods is to use all lowercase characters with the first letter in the

second and subsequent words being uppercase. Examples are total, maximumNumber, and

computeTotalCost. For class names, use uppercase leading characters on all words with no inter-word

separator. Examples from the core class library are CheckboxGroup, Choice, and BorderLayout. Identifiers

spelled in all uppercase (with _ as the inter-word separator) are often used for other purposes, as we shall see

in §1.10. For a detailed discussion of identifier naming conventions, see "Naming Conventions" in the book "The

Java Language Specification" mentioned in the Preface.

Keywords are only recognized as such if they are spelled entirely in lowercase. The complete list of keywords is

shown in Annex B.

Style Tip: It is very bad style to invent an identifier such as If, Else, or FOR, since such names are

too easily confused by the reader (but never by the compiler) with keywords having the same

names but spelled in lowercase.

Exercise 1-6*: Which of the following are valid identifiers : name, _Xyz_, _, Total.count,

Today'sdate, first-name, day_of_week, X32BITS, TOTAL$COST, 3WiseMen,

LastNameOfMyFathersGrandfatherInLaw? (See lab directory Lbba01.)

1 The dollar sign $ is also permitted but its use is discouraged. Symbols from non-Roman alphabets and non-Arabic number
systems are also permitted; however, that is beyond of the scope of this text.
Starting with Java 9, a name consisting of a single underscore changed from being an identifier to be a keyword.

1. The Basics

7

1.4 Introduction to Formatted Output

Unlike many older languages, Java has no input or output statements. Instead, a set of I/O methods is provided as

part of the standard library. Two such library methods are PrintStream:print and PrintStream:println.

These methods write formatted output to the standard output device, which, typically, is directed to the user's

terminal. For example (see directory Ba04):

public class Ba04

{

 public static void main(String[] args)

 {

/*1*/ System.out.print("Hello.\n");

/*2*/ System.out.print("\nWelcome");

/*3*/ System.out.print(" to Java.\n");

/*4*/ System.out.print("Hello.\n\nWelcome to Java.\n");

/*5*/ System.out.println("Hello.\n\nWelcome to Java.");

/*6*/ System.out.println("Three "

 + "separate "

 + "words");

 }
}

which produces the following output:

Hello.

Welcome to Java.

Hello.

Welcome to Java.

Hello.

Welcome to Java.
Three separate words

In all six calls above, the output method name is prefixed with System:out. As we learned earlier, a method

name is unique within its parent class and since the print and println methods operate on the public variable

out defined in class System, we must qualify these method names as shown. We will learn more about System

and out in §9.

In case 1, print is called with one argument, a string literal. (A string literal has type String, a type defined in

the standard library. We'll learn more about this type in §4.1.) The characters enclosed in double quotes are

written out verbatim, except for certain escape sequences, which begin with a backslash. \n is Java's notation for a

newline, the character that moves the print position to the first character on the next output line.1 A newline is

not automatically appended by print, so print can be invoked multiple times to print an output line a piece at

1 While a newline may actually generate more than one character (such as a carriage return/line feed pair) on output, within
a Java program it is considered a single character.

Programming in Java

8

a time, as shown in cases 2 and 3. print can also output multiple lines at a time. If we want double spacing, we

must use two consecutive newlines, as shown in cases 4 and 5.

Calling print three times to put out three parts of some output seems rather inefficient and it is. Case 4 achieves

the same thing with only one such call. Unlike print, println appends a newline to the string being written; in

all other respects, these two methods are identical.

In cases where we have long string literals, or our style requires considerable indenting, it may be necessary or

convenient to break a string literal over multiple lines. Now while we can put an arbitrary amount of white space

between two adjacent tokens, we cannot split a single token, such as a string literal. To handle this case, we can

break the string literal into a number of smaller strings, separating them with white space as desired as well as

with the string concatenation operator +, as shown in case 6.

Inside string literals, the backslash is used as an escape character prefix. It indicates that the following one or

more characters are to be interpreted with other than their literal meaning. Each escape sequence represents a

single character (and often one that is non-printable). The complete set of escape sequences is:

Table 1-1: Escape Sequences

Sequence Value Meaning

\b 0x0008 Backspace

\f 0x000C Form feed

\n 0x000A Line-feed

\r 0x000D Carriage return

\t 0x0009 Horizontal tab

\\ 0x005C Backslash

\' 0x0027 Single quote

\" 0x0022 Double quote

\ooo 0x0000–00FF Octal bit pattern

\uhhhh‡ 0x0000–FFFF Unicode character in hex

‡ Strictly speaking, this is a Unicode sequence; not only can it be used inside character and string literals, it can be

used anywhere in a source file to designate the corresponding Unicode character. Note that hhhh is exactly four

hex digits long having leading zeroes as necessary.

For the most part, the escape sequences are self-explanatory; however, a few need further explanation. Carriage

return is a holdover from the early days of C. It is unlikely it will ever be needed in mainstream programming; a

newline will always suffice as a line terminator. Sometimes it is necessary to escape a single quote, as we shall see

in §1.6.2. To enclose a double quote in a string literal, we must use \".

1. The Basics

9

The octal bit pattern sequences allow special commands to be sent to output devices. For example, to clear the

screen of a terminal that understands ANSI hardware escape sequences, we print the character sequence

\33[2J, where \33 represents the ESCAPE character. Likewise, we can use escape sequences to set a dot-matrix

printer to bold, italic, or underline mode, for example. An octal escape sequence can contain between one and

three octal digits.

While a hexadecimal escape sequence can perform the same task as an octal escape sequence, it can represent a

much larger range of values. In fact, it can represent any character in the Unicode character set. For example,

\u03A0 and \u03C0 represent the Greek letters Π and π, respectively, while \u2020 and \u2021 represent † and ‡.

A hexadecimal escape sequence must contain exactly four (upper-, lower-, or mixed-case) hexadecimal digits.

Both print and println can output the value of one or more variables as well as text and escape sequences, as

the next example demonstrates (see directory Ba05):

public class Ba05

{

 public static void main(String[] args)

 {

/*1*/ int year;

/*2*/ year = 1992;

/*3*/ System.out.println("Year " + year + " was a leap year.");

/*4*/ int i = 10, j = i + i;

/*5*/ System.out.println(i + " + " + i + " = " + j);

 }
}

The output produced is:

Year 1992 was a leap year.
10 + 10 = 20

In case 1, the variable year is defined to be of type int, a signed integer type that can represent a range of

values that includes 1992. (We will discuss the range of each integer type in §1.5.2.)

Variables must be declared explicitly before their first use. Unlike some languages, when an unknown variable

name is used, there is no implicit creation or typing; it is diagnosed as an error. Like statements, each definition

must be terminated by a semicolon.

We assign values to variables using the assignment operator =, as shown in case 2. The value assigned can be a

literal, the value of another variable, the result returned from a method, or the value of any expression having

compatible type.1 If necessary, the type of the result of the right-hand expression is converted to match that of

the left-hand expression.

In case 3, println is called with an argument involving two string literals and a variable of type int. Whenever

one of the operands of the binary + operator has type String and the other does not, that other one is implicitly

1 All arithmetic types are compatible with one another.

Programming in Java

10

converted to a string via an implicit call to a library method. As a result, the value of year is automatically

formatted as a string and that string is concatenated with its predecessor and its successor before being printed.

The string produced for the value of year contains decimal digits and uses only the number of print positions

needed. A leading sign is present only if the value is negative.

Tip: The simplest way to convert the value of an expression to its corresponding string

representation is to concatenate that expression with an empty string; for example, "" + 123

results in the string "123".

The definition of a variable can contain an initializer (such as = 10 in case 4) thereby eliminating the need for a

separate assignment statement. As shown, multiple variables can be defined at the same time, a variable's name

can be used immediately after it has been defined, and the initializer of a variable can be an expression involving

non-constant terms.

Provided a variable is defined before its first use, its definition can be interspersed with statements.

Style Tip: By placing each variable in its own separate definition, with one definition per source

line, you leave room for a trailing comment. You can also cut and paste lines more easily in a full-

screen text editor.

Initially, the basic output machinery did not provide direct support for controlling the format of output; however,

the class DecimalFormat (and its siblings in package java.text, which was introduced in JDK1.1) provides a lot

of formatting capability. Note that understanding and using this facility requires familiarity with most of the

chapters in this book; that's why it is provided as an appendix. A somewhat simpler, alternate, approach to

formatted output was added in JDK1.5. For more information on these facilities, see Annex D.

Exercise 1-7*: What happens if you try to use the value of a variable that hasn't been initialized?

(See lab directory Lbba02.)

Exercise 1-8*: What happens if you use an undefined escape sequence such as \x or *? (See lab

directory Lbba03.)

1.5 The Primitive Data Types

The primitive types are those built-in to the compiler; they are the logical type boolean and the numeric types.

The numeric types are further broken down into integer and floating-point types.

1.5.1 The boolean Type

Variables of type boolean can contain the value true or false. Strictly speaking, these two names are Boolean

literals; however, they behave like keywords in that they are reserved. Here's an example involving this type (see

directory Ba06):

1. The Basics

11

public class Ba06

{

 public static void main(String[] args)

 {

 boolean complete = true;

 System.out.println(complete + ", " + false);

 complete = false;

 }
}

which produces the following output:

true, false

As we can see, the value of each expression of type boolean is converted to a string before being concatenated

to the string(s) adjacent.

1.5.2 The Integer Types

All integer types except char are signed, use twos-complement representation, and have the following sizes and

value ranges:

Table 1-2: The Integer Types

Type Size Value Range

byte 8 bits -128 to +127

short 16 bits -32,768 to +32,767

int 32 bits -2,147,483,648 to +2,147,483,647

long 64 bits -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

char 16 bits 0x0000 to 0xFFFF (0 to 65,535)

Strictly speaking, there are no unsigned integer types although char really does represent an unsigned value.

Here's an example that uses the integer types (see directory Ba07):

public class Ba07

{

 public static void main(String[] args)

 {

 byte b = 127;

 short s = -56;

 int i = 2147483647;

 long l = 1234;

Programming in Java

12

/*1*/ System.out.println(b);

/*2*/ System.out.println(s);

/*3*/ System.out.println(i);

 l = l * i;

/*4*/ System.out.println(l);

/*5*/ i = i + 1;

 System.out.println(i);

/*6*/ l = i = s = b = 100;

/*7*/ char c = 65; // 'A' has value 65 in Unicode

 System.out.println(c);

 }

}

which produces the following output:

127
-56

2147483647

2649994820398

-2147483648
A

As we can see, println knows how to format and display values of the integer types. In case 5, we add 1 to i

causing its value to overflow. However, rather than produce a runtime error or result in undefined behavior, Java

requires that such operations "wrap around". For signed integer operations this means the value goes from the

largest positive value to the smallest negative or, for subtraction, vice versa; for char operations, this means we

go from the largest value to zero or, for subtraction, vice versa.

Since variables of type byte, short, int, and long represent increasingly larger value ranges, case 6 is perfectly

well formed. That is, any value that can be stored in a byte can safely be stored in a short, and so on up to

long.

In case 7, we are initializing a char with an integer value; and while this works just fine, it doesn't make the code

particularly readable. In §1.6.2, we'll see how to write this more clearly using a character literal.

We can manipulate the bits in an integer value via a series of operators; for example, we can shift bits left or right

using the binary operators <<, <<=, >>, >>=, >>>, and >>>=, we can mask them using the binary operators &, &=,

|, |=, ^, and ^=, and we can complement them using the unary operator ~.

The classes BigDecimal and BigInteger (both of which were introduced in JDK1.1) provide support for

arbitrary-precision signed-decimal and binary arithmetic, respectively.

Exercise 1-9*: Write a program that has three int variables named cost, markup, and

quantity, and initialize them to $20, $2, and 123, respectively. Print the result of retail cost ×

quantity, where retail cost equals cost + markup. (See lab directories Lbba04 and Lbba04b.)

1.5.3 The Floating-Point Types

All floating-point types are signed, use IEEE 754 representation, and have the following sizes and value ranges:

1. The Basics

13

Table 1-3: The Floating-Point Types

Type Size Value Range

float 32 bits ±1.4×10-45 to 3.4028235×10+38

double 64 bits ±4.9×10-324 to 1.7976931348623157×10+308

Java supports IEEE 754's notion of ±∞ as well as NaN. (NaN is an abbreviation for Not-a-Number and is a value

used to represent special cases such as zero divided by zero.)

Here's an example that uses the floating-point types (see directory Ba08):

public class Ba08

{
 public static void main(String[] args)

 {

 int i = 1;

 float f = i;

 double d = i;

/*1*/ System.out.println(f/3);

/*2*/ System.out.println(f/126);

/*3*/ System.out.println(f/126932);

/*4*/ System.out.println(d * 123456789);

 i = 2147483647;

/*5*/ d = f = i;

 System.out.println(i);

 System.out.println(f);

 System.out.println(d);

 }
}

which produces the following output:

0.33333334

0.007936508

7.878234E-6

1.23456789E8

2147483647

2.14748365E9
2.147483648E9

1.6 Literals

1.6.1 Boolean Literals

There are only two, true and false; we learned about them in §1.5.1.

Programming in Java

14

1.6.2 Character Literals

Since characters really are represented as integers, variables of type char can be initialized with integer

expressions, as follows:

char c = 65; // 'A' has value 65 in Unicode

However, this requires us to know that the Unicode value of A is 65. To allow for readability, we can write such

values in the form of character literals using the form 'x', for example:

'A' '+' 'ß' 'ñ' 'æ' '\n' '\" 'Π' '\u03A0'

As we can see, any Unicode character can be specified either by its printable form, by its escape sequence

equivalent, or as a Unicode sequence. The single quote is represented by its equivalent escape sequence.

1.6.3 String Literals

A string literal consists of zero or more characters enclosed in double quotes. As we have seen, it can contain

escape and Unicode sequences. String literals cannot be modified. The following are examples of string literals:

"Hello\n" "" "abc\tdef" "\"quoted text\"" "\u00abcd" "\uabcd"

Note that "\u00abcd" is subtly different to "\uabcd"; the former contains three characters, '\u00ab', 'c',

and 'd', while the latter contains only one, '\uabcd'. Remember, a Unicode sequence must always contain

four hex digits.

1.6.4 Integer Literals

An integer literal has a base (or radix), as determined by the presence of a prefix. If it has a prefix of 0x or 0X, it is

interpreted as a hexadecimal (base 16) number and is permitted to contain the characters a–f and A–F, as well as

the digits 0–9. If the prefix is just 0 (zero), the number is interpreted as octal (base 8) and only the digits 0–7 are

permitted. All other integer literals are deemed to be decimal (base 10) and can contain only the digits 0–9.

Java 7 added support for binary (base 2) literals, which have a prefix of 0b or 0B.

Since a literal is an expression, and each expression has a type, a literal has a type as well as a value. An integer

literal can explicitly be given the type long by the addition of a suffix of L or l.

Style Tip: When writing literals of type long, use L instead of l since the latter can easily be

mistaken for the digit 1.

Consider the following code fragment:

/*1*/ long l1 = 2147483647; // okay

/*2*/ long l2 = 2147483648; // error

/*3*/ long l3 = 2147483648L; // okay

/*4*/ long l4 = -2147483648; // okay

/*5*/ long l5 = -2147483649; // error

In the absence of an L or l suffix, an integer constant has type int; however, that constant's value cannot exceed

the range of values for that type. As such, case 2 is an error even though the variable being initialized is large

enough to store the specified value. To rectify this, we must add an explicit suffix as shown in case 3.

1. The Basics

15

In case 4, we have an expression involving the unary minus operator and a non-negative constant. Note that

2147483648 is the magnitude of the smallest value that can be represented in a signed 32-bit integer. This

number can only be written without a suffix if it is the operand of the unary minus operator; otherwise, it must

have a suffix. Similarly, 9223372036854775808 is the magnitude of the smallest value that can be represented in

a signed 64-bit integer. This number can only be written if it is the operand of the unary minus operator and has a

suffix; otherwise, it is invalid.

Case 5 is invalid because integer constants that exceed the range of values representable by an int must have a

suffix regardless of their base.

The following are examples of integer literals:

0b101 // binary, int

123456 // decimal, int
01234 // octal, int

0x09aB // hex, int

0XfFc5 // hex, int

-2147483648 // decimal, int

5L // decimal, long

013677777777L // octal, long
0xAb2L // hex, long

Consider the following initializer:

int i = 0L; // error, possible loss

The type of the constant is long, which supports a larger range than the type of i, which is int. Therefore, the

compiler issues an error even though the actual value of the initializer in this case can be represented in the

variable.

There is no such thing as a negative-valued integer literal; for example, the expression -5 consists of the literal 5

and the unary minus operator.

Java 7 added support for having underscore character (“_”) separators between adjacent digits in an integer

literal; for example:

long creditCardNumber = 9876_5432_1012_3456L;
long bytes = 0b11100011_00011100_10101010_01010101;

1.6.5 Floating-Point Literals

A floating-point literal must contain a decimal point, an exponent, or both. It may optionally contain whole

number and fractional parts. The exponent can be written using either an upper- or lowercase E, and it can

contain a leading sign. Both the value and exponent parts are interpreted as decimal.

A suffix of F or f indicates type float, while a suffix of D or d indicates type double. An unsuffixed floating-point

literal has type double.

The following are examples of floating-point literals:

.952 // double (implicit)

3e34 // double "

1.23E5 // double "

Programming in Java

16

345.D // double (explicit)

3.456e+4d // double "

345.F // float
3.456E-27f // float

Consider the following initializer:

float f = 0.0; // error, possible loss

The type of the constant is double, which supports a larger range and precision than the type of f, which is

float. Therefore, the compiler issues an error even though the actual value of the initializer in this case can be

represented in the variable.

Java 7 added support for having underscore character (“_”) separators between adjacent digits in a floating-point

literal; for example:

float pi = 3.14_15_26F;

1.7 Enum Types

An enum type is made up of a set of named constant values each of which is called an enum member. Each distinct

enum constitutes a different enum type. The use of enum types and their enum members provides a useful

amount of abstraction. For example (see directory Ba12):

/*1*/ enum CarColor {Black, White, Red};

/*2*/ enum HouseColor {Red, Green, Blue, Yellow};

In case 1, we define an enum called CarColor with three enum members, Black, White, and Red. (Enum

member names are identifiers.) In case 2, we define an enum HouseColor, giving it four enum members.

public class Ba12

{

 public static void main(String[] args)
 {

/*3*/ CarColor c1 = CarColor.Black;

/*4*/ HouseColor c2 = HouseColor.Green;

/*5*/ c1 = CarColor.White; // okay

//*6*/ c1 = HouseColor.Blue; // error, incompatible types
//*7*/ c2 = CarColor.Red; // error, incompatible types

/*8*/ c2 = HouseColor.Blue; // okay

//*9*/ c1 = c2; // error, incompatible types

/*10*/ System.out.println("c1 = " + c1 + ", c2 = " + c2);

 }
}

The output produced is:

c1 = White, c2 = Blue

1. The Basics

17

To access enum members, we must prefix them with their parent enumeration type and the dot operator, as

shown in cases 3 and 4. This allows multiple enumerations to have the same enum member names, as is the case

with Red.

Since operations involving enumerations and enum members are strongly checked with respect to type

compatibility, situations such as those occurring in cases 6, 7, and 9, are rejected.

In case 10, the values of c1 and c2 are written out as strings.

The use of an enumeration permits compile-time checking to be performed when a variable is permitted to take

on any one of an enumerated set of values only. Since this is a common situation in programming, we should use

enumerations whenever we can.

We can share an enum type definition between source files by defining that type in its own source file (having the

same name as the enum type) and by declaring that type to be public.

1.8 Operator Precedence

When an expression involves more than one operator, the compiler determines the order in which it groups

terms, based on the precedence table.1 Consider the following example (see directory Ba09):

public class Ba09

{
 public static void main(String[] args)

 {

 int i = 5;

 long l = 500;

 float f = 3.58345f;

 double d;

/*1*/ d = i + l * f; // d = i + (l * f)

 System.out.println("d = " + d);

/*2*/ d = (i + l) * f;

 System.out.println("d = " + d);

/*3*/ d = i + l + f; // d = (i + l) + f

 System.out.println("d = " + d);

/*4*/ System.out.println("i squared = " + i * i);

/*5*/ System.out.println("twice i = " + i + i);

/*6*/ System.out.println("twice i = " + (i + i));

 }

}

The output produced is:

d = 1796.72509765625

d = 1809.642333984375

1 This table is shown in Annex A, along with a discussion of operator precedence and associativity.

Programming in Java

18

d = 508.58343505859375

i squared = 25

twice i = 55
twice i = 10

In case 1, multiplication has higher precedence than addition, resulting in the value of l being multiplied by the

value of f and the result being added to the value of i then stored in d. The default precedence and associativity

can be overridden via the use of grouping parentheses, as shown in case 2. Here, the values of i and l are added,

and the result is multiplied by the value of f.

In case 3, the two addition operators have the same precedence, since they are the same operator. However, this

operator has left-to-right associativity; that is, the left one is given higher precedence. Therefore, the values of i

and l are added, and the result is then added to the value of f.

In case 4, the multiplication has higher precedence than addition so the square of i is computed before being

written. However, case 5 does not give the result we might have expected. Here, the first i is concatenated to the

string literal forming a new string. Then the second i is concatenated and that string is output, resulting in 55

instead of 10 as produced by case 6. The fact that + has meaning both for string literals and numeric types matters

not, the precedence is the same for both situations.

Unlike some languages (such as C and C++), Java guarantees that the order in which terms of an expression are

evaluated is left-to-right. Consider the following:

f() + g() * h()

Here, the precedence is quite clear; multiplication wins out over addition, as demonstrated by the corresponding

parse tree:

 +

 / \

 / \
f() *

 / \

 / \

 g() h()

However, in what order are the three terms themselves evaluated? That is, in what order are the three methods

called? Terms (which are, of course, subexpressions) are evaluated left-to-right in the expression as written. For

example, although the following expressions can be represented mathematically by the same parse tree, each has

a different order of evaluation of terms, as indicated by the corresponding comments:

f() + g() * h() // f, g, then h

f() + h() * g() // f, h, then g

g() * h() + f() // g, h, then f

h() * g() + f() // h, g, then f

1.9 Type Conversion

Like most languages, Java permits expressions to contain terms of different types, provided the types are

compatible. Consider the following fragment taken from an earlier example; it contains a mixed-mode

expression:

1. The Basics

19

int i = 5;

long l = 500;

float f = 3.58345f;

double d;

d = i + l + f; /* d = (i + l) + f */

The precedence table determines how pairs of terms are grouped. Because of that grouping, the type of each

subexpression is determined. In the example above, since i and l have different (but compatible) types, implicit

conversion of the value of i to long occurs, and the result of the addition has type long. Then that value is

converted to type float so it can be added to f, producing a result of type float. The value of this result is

then converted to type double during its assignment to d.

The order in which we write the terms in this assignment expression can be important. For example, the

following are subtly different:

/*1*/ d = i + l + f; /* d = (i + l) + f */
/*2*/ d = f + i + l; /* d = (f + i) + l */

In case 2, the value of i is converted to type float and then added to f, producing a result of type float. Then,

the value of l is converted to type float and added to the result of the previous addition. For many values of i,

l, and f, the two versions will produce the same result. However, consider case 1 when l contains the largest

value that can be stored in a variable of type long, and the value of i is 1 or more. When they are added,

wrapping occurs, since the result cannot be represented in the type long. If, however, the expression is

rearranged as in case 2, all intermediate results are performed in type float, so no integer wrapping can occur.

Controlling the type of intermediate results by rearranging the expressions is poor style. Instead, it is better to

use explicit type conversion. This is done via the cast operator, which has the following general form:

(type-name) operand

This unary prefix operator consists of a type name inside parentheses. For example, in the case of (int)x, an

unnamed variable of type int is created and its value is that of x converted to type int. The type and value of x

is unchanged. We can use a cast in our previous example to avoid the possibility of integer wrapping, as follows:

/*1*/ d = (float)i + l + f;

/*2*/ d = i + (float)l + f;
/*3*/ d = (float)i + (float)l + f;

In case 1, the value of i is explicitly converted to type float, resulting in the value of l being implicitly converted

to type float as well. In case 2, the value of l is explicitly converted to type float, resulting in the value of i

being implicitly converted to type float. In case 3, both i and l are explicitly cast. All three cases are equivalent.

The value of an expression having any numeric type can be cast explicitly to any numeric type; however, it may

result in a loss of precision, for example, when a double is cast to a float or to an int. An expression can be

cast to its own type, although such a cast has no effect.

Style Tip: Avoid unnecessary casts because they detract from readability.

Programming in Java

20

The following conversions can result in a loss of significant information and/or precision. Therefore, such

conversions require an explicit cast:

• byte to char

• short to byte or char

• char to byte or short

• int to byte, short, or char

• long to byte, short, char, or int

• float to byte, short, char, int, or long

• double to byte, short, char, int, long, or float

Even though char and short both use 16 bits, the values of a short are signed while those of a char are not, so

neither can represent the complete range of values of the other.

There are several exceptions to this conversion requirement; for example:

/*1*/ byte b1 = 10;

/*2*/ byte b2 = (byte)10; // redundant cast

/*3*/ short s1 = 10;
/*4*/ short s2 = (short)10; // redundant cast

In case 1, the type of the initializer is int yet the variable being initialized is a byte, so truncation is involved.

However, since the int is a constant, the compiler allows such constructs if the value of the constant can be

represented in a byte. Case 2 does explicitly what the compiler already allows implicitly in case 1. Similarly, in

case 3 a short is being initialized with an int constant. Note, however, that unless the initializing value in cases 1

and 3 is a constant, it will be rejected. For example:

/*1*/ int i = 0;

/*2*/ byte b3 = i; // error, possible loss
/*3*/ byte b4 = (byte)i; // compiles

The remaining case involves the initialization of a char:

/*1*/ char c = 65;

/*2*/ char c = (char)65;

In case 1, the type of the initializer is int yet the variable being initialized is a char, so truncation is involved.

However, since the int is a constant, the compiler allows such constructs if the value of the constant can be

represented in a char. Case 2 does explicitly what the compiler already allows implicitly in case 1.

1.10 Introduction to Class Members

Earlier in this chapter, we saw an example involving one method, welcome, being called from another method,

main, where the definitions of these methods resided in different classes. The following example (see directory

Ba10) uses that same approach, and introduces some other features:

1. The Basics

21

public class Ba10a

{

// class variables

/*1*/ public final static int NUM_MONTHS = 12;

/*2*/ private static float value;

// class methods

 public static void main(String[] args)
 {

/*3a*/ System.out.println("main:value = " + value);

/*3b*/ changeValue();

/*3c*/ System.out.println("main:value = " + value);

/*4a*/ Ba10b.display1();
/*4b*/ Ba10b.display2();

/*5*/ int value = 200;

/*6*/ System.out.println("main:value = " + value);

/*7*/ System.out.println("main:value = " + Ba10a.value);

 }

 private static void changeValue()

 {

/*8*/ value = -1.87F;

 }

}

Not only can we define methods in classes, we can also define variables there, outside of the bodies of all

methods. Such variables are called fields; NUM_MONTHS and value are examples, and each has the type shown.

Since NUM_MONTHS is public it is accessible from outside its parent class, provided its name is prefixed with its

parent class, as shown in case 9 below. It can be accessed without that prefix from within methods in its own

class. Since value is private, it cannot be accessed outside its parent class, although it can be accessed by any

method in its class. Both fields are static indicating that they are class variables; that is, they are variables

belonging to this class.1

NUM_MONTHS has been declared final, which means that once it has been initialized, its value cannot be

changed. Note that an initializer need not be a constant expression. The recommended style of naming final fields

is to use all capitals with an underscore (_) as a multiword separator, as shown above.

By default, arithmetic fields take on a value of 0 or 0.0, as appropriate, which is demonstrated by the output from

case 3a. In case 3b, we call changeValue, and since this is a method in the same class, it has access to Ba10a's

class variables, allowing it to change value in case 8. The new value is reflected by the output from case 3c.

Let's ignore the calls to display1 and display2 for now, since they have no impact on the program's output

from this class.

1 We'll learn more about class variables and instance variables in §5.

Programming in Java

22

In case 5, we define a local variable whose name is the same as that of a field in the parent class. This is permitted

and causes the field to be hidden by the local variable name (even though the two types differ) from the point at

which that local variable is defined, to the point at which it goes out of scope, which happens at the closing brace

of its enclosing block. As such, the output from case 6 reflects the local variable's value; however, as we can see in

case 7, we can still access the field by using its class name as a prefix.

Ba10b.java contains:

public class Ba10b

{

/*9*/ private static float value = Ba10a.NUM_MONTHS * 10.5F;

 public static void display1()

 {

/*10*/ System.out.println("display:value = " + value);

/*11*/ value = 53.56F;

 }

 public static void display2()

 {

/*12*/ System.out.println("display:value = " + value);

 }
}

The class variable value defined in case 9 belongs to class Ba11b and is completely separate from the class

variable having the same name in class Ba11a. As a result, references to value in cases 10, 11, and 12, refer to

Ba11b.value.

The output produced is:

main:value = 0.0

main:value = -1.87

display:value = 126.0

display:value = 53.56

main:value = 200
main:value = -1.87

As we have seen, a class introduces a namespace, so we can define a class to contain final variables (constants),

variables, and methods for general use. In fact, the standard Java library contains a number of classes that do just

this. Here are excerpts from several of the more commonly used ones:

public class Character

{

// Fields
 public final static char MIN_VALUE = '\u0000';

 public final static char MAX_VALUE = '\uffff';

// Methods

 public static boolean isDigit(char ch);

 public static boolean isLetter(char ch);
 public static boolean isLetterOrDigit(char ch);

1. The Basics

23

 public static boolean isLowerCase(char ch);

 public static boolean isWhitespace(char ch);

 public static boolean isUpperCase(char ch);

 public static char toLowerCase(char ch);

 public static char toUpperCase(char ch);
}

The constants indicate the smallest and largest value, respectively, that can fit into a variable of type char. The

methods each operate on a char argument either to test that character's attributes or to produce the converted

value of that character. Program Ba11 demonstrates the use of some of these methods and here are excerpts

from that program, along with the corresponding output:

 char c = 'A';

/*1*/ System.out.println("isDigit: " + Character.isDigit(c));

/*2*/ System.out.println("isLetter: " + Character.isLetter(c));

/*3*/ System.out.println("isLower: " + Character.isLowerCase(c));
/*4*/ System.out.println("isWhite: " + Character.isWhitespace(c));

/*5*/ System.out.println("isUpper: " + Character.isUpperCase(c));

/*6*/ System.out.println("toLower: " + Character.toLowerCase(c));

/*7*/ System.out.println("toUpper: " + Character.toUpperCase('?'));

The output produced is:

isDigit: false

isLetter: true

isLower: false

isWhite: false

isUpper: true

toLower: a
toUpper: ?

The output is obvious except perhaps for the result of toUpperCase. This method and its companion,

toLowerCase, return the converted value of their argument, or, if the argument cannot be converted, they

return the value of the argument.

Note that the method Character.isWhitespace was a JDK1.1 invention. Prior to that release, method

isSpace was used instead.

Programming in Java

24

Class Integer provides constants and methods that pertain to the type int. Here are some of them:

public class Integer

{

// Fields

 public final static int MIN_VALUE = 0x80000000;

 public final static int MAX_VALUE = 0x7fffffff;

// Methods

 public static String toBinaryString(int i);

 public static String toHexString(int i);

 public static String toOctalString(int i);

 public static String toString(int i);
}

Here are more excerpts from Ba11:

/*8*/ System.out.println("toBinary: " + Integer.toBinaryString(100));
/*9*/ System.out.println("toHex: " + Integer.toHexString(100));

The output produced is:

toBinary: 1100100
toHex: 64

In the following code fragment, the two cases are equivalent; while the first results in an implicit conversion of the

int value to a string, the second does it by an explicit call to the toString method:

 int value = -45;

/*10a*/ System.out.println("string: " + value);
/*10b*/ System.out.println("string: " + Integer.toString(value));

The output produced is:

string: -45

string: -45

Class Double provides constants and methods that pertain to the type double. Here are some of them:

public class Double

{

// Fields

 public final static double MIN_VALUE = 2.2250738585072014E-308;
 public final static double MAX_VALUE = 1.79769313486231570e+308;

 public final static double NaN = 0.0/0.0;

 public final static double NEGATIVE_INFINITY = -1.0/0.0;

 public final static double POSITIVE_INFINITY = 1.0/0.0;

// Methods
 public static boolean isInfinite(double v);

 public static boolean isNaN(double v);

 public static String toString(double d);
}

1. The Basics

25

Here are more excerpts from Ba11:

 int value = -45;

/*11a*/ System.out.println("string: " + (5.6 + value));
/*11b*/ System.out.println("string: " + Double.toString(5.6 + value));

The output produced is:

string: -39.4
string: -39.4

The code continues:

/*12*/ System.out.println("string: " + Double.NEGATIVE_INFINITY);

The output produced is:

string: -Infinity

As we have seen, the classes Character, Integer, and Double support the primitive types char, int, and

double, respectively. There are also classes that perform similar operations on the types byte, short, long,

and float. Here is the set of classes and their corresponding primitive types:

Class Primitive

Type

Boolean boolean

Character char

Byte byte

Short short

Integer int

Long long

Float float

Double double

Programming in Java

26

Class Math provides constants and methods that pertain to mathematics. Here are some of them:

public class Math

{

// Fields

 public final static double E = 2.7182818284590452354;

 public final static double PI = 3.14159265358979323846;

// Methods

 public static float abs(float a);

 public static double abs(double a);

 public static double log(double a);

 public static double sin(double a);
 public static double sqrt(double a);

}

Note that most methods in the math library are only available in double precision.

Exercise 1-10: Look at the documentation for the classes that directly support for the primitive

types and see what public final static variables and public static methods they provide. In

particular, look at the toString methods in Float and Double to see how they format certain

special and other values.

Exercise 1-11*: A circle's diameter is 10.3 cm. Compute and display its area and circumference

given that a = πr2 and c = 2πr. The area and circumference variables have type float. (See lab

directories Lbba05 and Lbba05b.)

4. References, Strings, and Arrays

63

4. References, Strings, and Arrays

In this chapter, we will learn about reference variables, the allocation of memory at runtime using new, garbage

collection, array allocation and manipulation, and the string classes String and StringBuffer.

4.1 Introduction

There are two categories of types in Java: primitive and reference. We have already seen examples of the

primitive types boolean, byte, short, int, long, char, float, and double.

In the definition int i;, i is a variable and the name i designates some specific storage location in memory. We

say that the value of i is some int. Throughout its life, that variable is always associated with the same location.

(This may seem obvious based on your experience with other languages but it's most important to understand

when we look at reference types.) To help us understand reference types, let's look at the following example (see

directory Rf01):

public class Rf01

{

 public static void main(String[] args)

 {

/*1*/ String name = "John";
/*2*/ System.out.println("name is " + name);

“John”name

/*3*/ name = "Jennifer";
 System.out.println("name is " + name);

“Jennifer”name

/*4*/ name = "Jennifer" + " Jones";

 System.out.println("name is " + name);

“Jennifer Jones”name

/*5*/ name = null;

/*6*/ System.out.println("name is " + name);

 }
}

nullname

Programming in Java

64

The output produced is:

name is John

name is Jennifer

name is Jennifer Jones

name is null

String is an object type defined in the Java library, and a string literal refers to an object of this type. An object

type is often called a class type. Unlike some languages, a string is not an array of byte nor is it an array of char;

it is a sequence of Unicode characters. The contents of an object of type String cannot be modified.1

In case 1, we define a variable called name. At first glance, we might think that name is a variable of type String

and that it contains the value "John" directly; however, that is not the case. Instead, name is a reference to that

string; that is, name does not actually contain that data, it simply points to that data, which resides elsewhere. (In

the case of a string literal, the data representing that string really has no name.) We say that name is a reference

variable and that its type is "reference to String".

We have seen that the + operator can concatenate string literals and, since a string literal is really a string, that

operator really concatenates strings. However, when doing so, it cannot simply add the second string to the end

of the first (remember, strings are read-only), so in case 2, it creates a new string with the concatenated value.

This new string is then displayed.

In case 3, name is made to refer to a different string. The important thing to understand here is that name "has

been made to point" to a different string; the value of the string "Jennifer" has not been copied anywhere.

In case 4, the two strings are concatenated resulting in a third string to which name is made to point. Because a

string's value is read-only, the second string cannot simply be appended to the end of the first one.

A primitive variable can only ever contain a value of its type. However, a reference variable can hold either a

reference to an object that is assignment compatible with the type of that variable, or the null reference. Case 5

introduces the name null. While this looks like a keyword, it really is referred to as the null literal; in any event,

the word null is reserved. By initializing a reference with the value null, we make it point "nowhere". The

output produced by case 6 shows us that when the value of a reference containing null is used in string

concatenation, the text "null" results.

There can be any number of references to the same object. For example (see directory Rf02):

public class Rf02

{

 public static void main(String[] args)

 {

 String name1 = "Mary";

/*1*/ String name2 = name1;
/*2*/ String name3 = name2;

1 The library class StringBuffer is similar to String except that objects of type StringBuffer can have their contents
changed. See §4.10.

4. References, Strings, and Arrays

65

“Mary”name1

name2

name3

 System.out.println("name1 is " + name1);

 System.out.println("name2 is " + name2);
 System.out.println("name3 is " + name3);

/*3*/ name1 = "Jennifer";

“Mary”

name1

name2

name3

“Jennifer”

 System.out.println("\nname1 is " + name1);

 System.out.println("name2 is " + name2);

 System.out.println("name3 is " + name3);

 }
}

The output produced is:

name1 is Mary

name2 is Mary

name3 is Mary

name1 is Jennifer

name2 is Mary
name3 is Mary

In cases 1 and 2, name2 and name3 are both made to refer to the same string, that also being referred to by

name1; however, all three are separate reference variables—their values just happen to be the same. Therefore,

when name1 is made to refer to a different string, as in case 3, name2 and name3 still refer to "Mary".

Programming in Java

66

In §1.10, we learned that a class can have fields and methods and that there were a number of classes available in

the Java library. For example, to test if the value of some char c is a digit, we can call the isDigit method of

class Character using the notation Character.isDigit(c). We prefix method names like isDigit with

their parent class name because such methods belong to the class as a whole. A class can have other methods,

which, instead of belonging to the class, are related to a particular instance of that class. For example, the String

class contains a method called length that returns the length of some string. On its own, this method is useless;

to work, it needs to operate on a specific string object. For example, to call it for a string called name, we use

name.length().

A method having the modifier static is a class method and belongs to the class as a whole. It can be called using

the class name as a prefix. A method not having the modifier static is an instance method and can be called to

operate on an instance of its parent class in which case, the name of that instance is used as the prefix.

Using this information, let's look at an example that calls some instance methods defined in class String (see

directory Rf03):

public class Rf03

{
 public static void main(String[] args)

 {

/*1*/ String month1 = "January";

 String x = "u";
/*2*/ String month2 = "Jan" + x + "ary";

“January”month1

“January”month2

/*3*/ System.out.println("== " + (month1 == month2));

/*4*/ System.out.println("== " + month1 == month2);

/*5*/ System.out.println("equals " + month1.equals(month2) + '\n');

 System.out.println("indexOf " + month1.indexOf('a'));

/*6*/ System.out.println("indexOf " + month1.indexOf('x'));

 System.out.println("indexOf " + month1.indexOf("nu"));

 System.out.println("lastIndexOf " + month1.lastIndexOf('a'));
 System.out.println("substring " + month1.substring(2, 5));

/*7*/ System.out.println("replace " + month1.replace('a', '?'));

 System.out.println("month1 " + month1 + '\n');

4. References, Strings, and Arrays

67

/*8*/ int length = month1.length();

 for (int i = 0; i < length; ++i)

 {

/*9*/ System.out.println("i = " + i + ", " + month1.charAt(i));

 }

 }
}

The output produced is:

== false

false

equals true
indexOf 1

indexOf -1

indexOf 2

lastIndexOf 4

substring nua

replace J?nu?ry
month1 January

i = 0, J

i = 1, a

i = 2, n

i = 3, u

i = 4, a
i = 5, r

i = 6, y

In case 1, we define month1 and make it refer to the string "January" created by the string literal. In case 2, we

define month2 and also make it refer to a string spelled "January"; and while these two strings just happen to

contain the same characters, they are not the same string! This can be seen from the output from case 3, which

shows that the two references do not refer to the same object. If we wish to compare the strings' content for

equality, we must use the method equals, as shown in case 5. There is also a case-insensitive comparison

method called equalsIgnoreCase.

Case 4 is worth a mention since it compiles but gives a (possibly) surprising answer. Since addition has a higher

precedence than equality, the string literal and month1 are concatenated and the resulting string's reference is

compared with month2 to see if they refer to the same string. Of course, they don't, so the result is false. To

make the equality test go first, we need the grouping parentheses, as shown in case 3.

indexOf searches for the first occurrence of a given character in a string. Since character positions within a string

start at zero, the first a is found at offset 1. If no match is found, -1 is returned, as in case 6. This method is

overloaded to allow searching for a string. lastIndexOf searches for the first occurrence of a given character in

a string, starting from the back end. substring extracts a substring with the given start and end positions;

however, note that the end position specified is actually one more than the end character position actually used.

In case 7, replace creates a new string whose contents have the given character changed as specified. As

demonstrated, the contents of the string referenced by month1 are unchanged.

Programming in Java

68

To find the length of a string, we call its length method, as shown in case 8. We can then use that value to

traverse the string, picking off one character at a time using charAt. Note that since a string is not an array, we

cannot access its characters via subscripting.

In this example, we have ignored the possibility of error. For example, what if charAt is given an index that is out

of bounds? Likewise, for substring. What if indexOf is given a null reference instead of a reference to a

string? These kinds of errors generate what are known as exceptions, which are discussed in detail in §7. For now,

it is only important to know that if an exception is produced and the program does not declare that it is ready to

handle it (using special syntax that we'll see later), the program terminates abnormally. The good news is that

such errors cannot go undetected.

Exercise 4-1*: What happens if you try to display the value of a reference variable that hasn't

been initialized? (See lab directory Lbrf01.)

4.2 Sharing of Like Strings

A Java compiler is required to share copies of strings. Specifically, the "Java Language Specification", states that

• Literal strings within the same class in the same package represent references to the same String object.

• Literal strings within different classes in the same package represent references to the same String object.

• Literal strings within different classes in different packages likewise represent references to the same

String object.

• Strings computed by constant expressions are computed at compile time and then treated as if they were

literals.

• Strings computed at run time are newly created and therefore distinct.

• The result of explicitly interning a computed string is the same string as any pre-existing literal string with

the same contents.

Consider the following example (see directory Rf13):

class Rf13a

{

 public static void main(String[] args)
 {

 String color = "Green", en = "en";

/*1*/ System.out.println(color == "Green");

/*2*/ System.out.println(Rf13b.color == color);

/*3*/ System.out.println(color == "Gre" + "en");

/*4*/ System.out.println(color == "Gre" + en);

/*5*/ System.out.println(color == ("Gre" + en).intern());

 }

}

class Rf13b

{

 public static String color = "Green";
}

4. References, Strings, and Arrays

69

which produces the output

true

true

true

false
true

As we can see, the compiler is required to share like-spelled string literals in various ways. The programmer can

also share these with strings created at runtime by using the method intern, as shown.

4.3 Passing and Returning References

Like variables of a primitive type, we can pass reference variables to a method and have a method return a

reference. For example (see directory Rf04:

public class Rf04
{

 public static void main(String[] args)

 {

 String day = "Monday";

 System.out.println("day is " + day);

/*1*/ changeDay(day);

/*2*/ System.out.println("day is " + day);

/*3*/ day = newDay();

/*4*/ System.out.println("day is " + day);
 }

“Monday”day

“Friday”d

/*5*/ private static void changeDay(String d)
 {

/*6*/ d = "Friday";

 }

/*7*/ private static String newDay()

 {
/*8*/ return "Wednesday";

 }
}

Programming in Java

70

The output produced is:

day is Monday

day is Monday
day is Wednesday

In case 1, we pass the value of day to changeDay. However, as we learned in §3.2, in Java all arguments are

passed by value; that is, a copy of their value is passed to the called method. Therefore, what changeDay

receives is a copy of the reference day, which, in case 5, is called d. In case 6, this copy is made to refer to some

other string; however, when changeDay returns, the copy is destroyed, and day still refers to "Monday", as

shown by the output produced by case 2.

Method newday is defined to return a reference to a string in case 7 and it does just that in case 8. This reference

is then assigned to day is case 3 resulting in "Wednesday" being displayed in case 4.

There really are no surprises here; it's just a matter of remembering that all arguments are passed by value and

that a reference only refers to an object, it is not the object itself.

4.4 Allocating Memory for Objects

When we define a primitive variable, memory is allocated for it at that time. However, when we define a

reference variable, memory is only allocated for the reference, not for any object to which it might refer. So far,

the only way we have seen to allocate memory for an object is to use a string literal. However, in many situations,

we don't know the value of a string at compile-time, and, in any event, eventually we'll need object types other

than strings. How then can we allocate memory for an object, on demand? We do this by using the new operator,

which has the following general format:

new class-type ([argument-list])

Here's an example of its use (see directory Rf05):

public class Rf05

{

 public static void main(String[] args)

 {

/*1a*/ String str1 = "ABC";

/*1b*/ String str2 = new String("ABC");

 String str3 = str2;

/*2*/ System.out.println("str2 == str3 is " + (str2 == str3));

/*3*/ String str4 = new String(str2);

/*4*/ System.out.println("str2 == str4 is " + (str2 == str4));

/*5*/ System.out.println("str2.equals(str4) is " + str2.equals(str4));

 }

}

The output produced is:

str2 == str3 is true
str2 == str4 is false
str2.equals(str4) is true

4. References, Strings, and Arrays

71

In case 1a, we implicitly allocate memory for a string and store a reference to that in str1. In case 1b, we allocate

memory explicitly for a string and store a reference to that in str2. What is really happening here is that

String() results in a call to a special method in the String class, called a constructor. (Like other methods in a

class, a constructor can be overloaded.) This method constructs a new string whose contents are "ABC".

As we learned earlier, str2 and str3 are references to the same string, so it should come as no surprise that the

equality expression in case 2 produces true. However, in case 3, we call a constructor that takes one argument, of

type String. This results in the value of the object being allocated, being initialized to the string specified by the

argument; that is, str4 refers to a copy of the string referred to by str2 rather than to the same string as str2.

So, the equality expression in case 4 produces false. Of course, the equals method still returns true since both

strings have the same content.

A new expression produces a reference to an object of the given class type, and can be used in any context in

which such a reference is permitted; for example:

String s1 = "Hello";

String s2 = new String(s1) + " there";

boolean b = (new String(s1)).equals("house");

The place from which new obtains memory is called the heap.

It is important to note that we cannot allocate memory for variables of primitive type directly using new. (See §4.9

for more information.)

4.5 Releasing Allocated Memory

As we have seen, we can allocate any number of objects using new, but we never seem to free up the memory we

allocated. Don't we run the risk of running out of memory? While it is possible to run out of memory, the most

likely answer is "No". At runtime, the Java environment runs what is called a garbage collector to gather up

discarded memory and make it part of the heap again. So as long as we discard memory when we no longer need

it, our program should be able to get more memory. (Of course, we do not have an infinite amount of memory.)

While we can explicitly discard memory, in the vast majority of cases, memory is discarded as a by-product of

some other action. Let's study the following example to see when this occurs (see directory Rf07):

Programming in Java

72

public class Rf07

{

 public static void main(String[] args)

 {

/*1*/ String day = new String("Monday");

/*2*/ String anotherday = day;

/*3*/ day = "Friday";

/*4*/ anotherday = null;

/*5*/ String newday = test(new String(day));

/*6*/ }

/*7*/ private static String test(String s)

 {

/*8*/ String str = new String(s);
/*9*/ return str;

 }

}

Each object allocated by new has associated with it a reference count which simply keeps track of the number of

reference variables that currently refer to that object. When an object's reference count is decremented to zero,

that object becomes a candidate for garbage collection.

In case 1, we allocate a new object with value "Monday" and refer to it using day; the object's reference count is

now 1. In case 2, we make anotherday refer to that same object, so the reference count goes to 2. In case 3, we

make day refer to the string "Friday", so Monday's reference count goes back to 1. In case 4, we make

anotherday refer to the null reference, reducing Monday's reference count to zero making it eligible for garbage

collection.

A new object is created in case 5 resulting in a reference count of 1, even though no named reference actually

refers to that object. This reference is passed to test by value resulting in s's being a reference to the same

object, whose reference count is now 2. No other references are made to this object within test so when test

returns, the reference s is destroyed as is that returned by the new operator before the method was called,

resulting in the reference count being decremented by 2, to zero.

In case 8, we create a new object which is a copy of that referred to by s. (This action does not change the

reference count of the object referred to by s, however.) When we return str in case 9, we are really returning a

copy of that reference which we then assign to newday back in main. When test returns, the reference str is

destroyed and the corresponding reference count is decremented, however, it doesn't become zero, since

newday still refers to that string. When main returns, newday is destroyed thereby reducing the reference count

of the object it refers to, to zero.

While we can decrement an object's reference count by one explicitly by assigning null to a reference to that

object, in most cases, it doesn't really help, and it probably clutters up the source code unnecessarily.

When does garbage collection take place? For the most part, the collection of discarded memory is under the

control of the Java run-time environment; however, there are three times it is done:

1. When the amount of memory left in the heap drops below some minimum threshold.

2. When cleanup is invoked explicitly by the program by calling the library method System.gc.

4. References, Strings, and Arrays

73

3. Otherwise, whenever the run-time environment gets around to it.

Having automatic garbage collection can remove a significant burden from certain kinds of programs. For

example, consider the case in which we have a singly linked list containing several hundreds or even thousands of

nodes. We have a root reference to the first node in that list, the first node has a reference to the second, and so

on. Assuming that each object is referenced by only one reference variable, if we assign a new value to the root

reference variable or that variable is destroyed, the whole list becomes eligible for garbage collection; we do not

need to traverse the list freeing up each individual node!

Exercise 4-2*: Define a method called compressString that takes a String argument and strips

off any leading and trailing white space from it, reduces any embedded consecutive series of

white space characters to a single space, and then returns the resultant String. For example, an

argument of "\t ABC \f DE\n" will be returned as "ABC DE". Hint: Method trim in class

String will help. Define compressString in public class LocalTools and write a program (in

a different class) to test it. (See lab directory Lbrf02 and LocalTools.)

4.6 Arrays

Organizing data into arrays allows us to process all, or a range, of elements in that array quite easily. Since arrays

are such common ways of representing lists, Java supports them. There is no limit on the number of dimensions

an array can have.

The reason we have deferred the discussion of arrays until now is that their usage involves references. Let's look

at several array definitions (each taken from the file Rf08.java):

long[] sizes;

float[][] readings;

String[][][] names;

Unlike most other languages, when we define what looks like an array in Java, what we are really defining is a

reference to an array. In this example, sizes is a reference to a one-dimensional array of long, readings is a

reference to a two-dimensional array of float, and names is a reference to a three-dimensional array of

String. As defined, these references are uninitialized; in short, there are no arrays in this example, only three

reference variables each of which is capable of referring to an array of the corresponding number of dimensions

and element type. Note that no dimension sizes are specified nor permitted.

In the following three examples, we not only define and allocate memory for three reference variables, we also

allocate memory for, and initialize, the arrays to which they refer:

int[] counts = {5, 7, 3, 9};

5counts

[0]

7

[1]

3

[2]

9

[3]

Programming in Java

74

counts is made to refer to an array of four ints, counts[0] through counts[3].1 Each of these is called a

component, which refers to the corresponding int element in the underlying array.

Each array reference has a read-only public field called length, which maintains at runtime, the number of

components in that array. In the case of counts, the length is 4. This allows us to loop through the array without

having to remember the number of iterations, as follows:

System.out.println("length of counts = " + counts.length);

for (int i = 0; i < counts.length; ++i)

{

 System.out.println("counts[" + i + "] = " + counts[i]);
}

The output produced is:

length of counts = 4

counts[0] = 5

counts[1] = 7

counts[2] = 3
counts[3] = 9

As we can see from the initializer list for newcounts, the initializer expressions need not be compile-time

constants:

int[] newcounts = {6, counts[1], counts[3]/3};

For multidimensional arrays, the larger initializer list contains other initializers, as necessary. For example, a three-

dimensional array initializer would be a list containing some lists, each of which contains yet more lists, as follows:

double[][] values = {

 {1.2, 3.4, 4.5},

 {5.6, 9.8, 5.4},

 {2.6, 9.2, 3.3},

 {7.6, 5.3, 0.6}
};

System.out.println("length of values = " + values.length);
System.out.println("length of values[0] = " + values[0].length);

The output produced is:

length of values = 4

length of values[0] = 3

We initialized values to refer to a 4×3 array. In reality, values refers to an array of 4 references, each of which

refers to an array of 3 doubles. As such, the length of values is 4 (the row count) and the length of

values[0]—and each other row—is 3 (the column count). As shown, we can use an array name with fewer than

1 An array of size n has subscripts in the range 0 to n-1. If we try to use a subscript value outside this range, an exception is
produced at runtime. For an example, see §7.1.

4. References, Strings, and Arrays

75

the maximum number of subscripts. For example, values refers to the array of 4 references, values[i] refers

to the ith array of 3 references, while values[i][j] refers to the double in row i, column j.

In all three examples above, the memory for the elements is allocated by the initializers.

We don't always know the number of elements we want in an array and even when we do, we don't necessarily

know all their values; for example, we may be computing them. How then can we allocate an array containing a

specific number of elements without providing an initializer list?

int[] totals = new int[4];

0totals

[0]

0

[1]

0

[2]

0

[3]

totals[0] = 5;
totals[2] = 3;

5totals

[0]

0

[1]

3

[2]

0

[3]

for (int i = 0; i < totals.length; ++i)
{

 System.out.println("totals[" + i + "] = " + totals[i]);

}

The output produced is:

totals[0] = 5

totals[1] = 0

totals[2] = 3

totals[3] = 0

Since references are involved, new was bound to show up eventually. In this example, we make totals refer to

an array of 4 int which we allocate explicitly. We then initialize two elements; however, as shown by the output,

all four have initial values with zero being used by default.

JDK1.1 added a feature called an anonymous array. For example (see directory Rf15):

Programming in Java

76

public class Rf15

{

 public static void main(String[] args)

 {

 int i = 10, j = 20, k = 30;

/*1*/ int[] a = new int[] {i, j, k};

 f(a);
/*2*/ f(new int[] {i, -5, k, 123});

 }

 private static void f(int[] x)

 {

 System.out.println("Length = " + x.length);
 }

}

In cases 1 and 2, we create an unnamed array using a new expression.

When allocating memory for an array, the size we specify can be any non-negative integer value.1 For example:

int[] xx1 = new int[1];
int[] xx2 = new int[0];

System.out.println("length of xx2 " + xx2.length);

int len = 24;

int[] xx3 = new int[len];
System.out.println("length of xx3 " + xx3.length);

The output produced is:

length of xx2 0
length of xx3 24

Not only can we have an array of size 1, we can even have an array of size zero! And, as shown, the allocation size

need not be a compile-time constant. If we try to create an array with a negative size, however, an exception is

produced at runtime.

One very powerful aspect of the way in which Java supports arrays is that array references can be changed. For

example:

int[] yy = new int[4];

int[] aa = yy;

yy = new int[20];
yy = null;

The output produced is:

double[][] zz = new double[3][4];
zz = new double[6][2];

1 The type of an array creation expression or a subscript expression cannot be long.

4. References, Strings, and Arrays

77

As the size of an array is not part of the reference type, yy can refer to any one-dimensional array of int. Initially,

we make it refer to an array of 4 elements, then we make it refer to an array of 20, and then to the null reference.

In the case of zz, it can be made to refer to any two-dimensional array of double. Therefore, while the number

of elements in an array is fixed at the time that array is created, we can make an array reference refer to arrays of

different sizes.

Since yy and zz are references, when we make them refer to new objects, the reference count of the objects to

which they previously referred, are decremented, possibly making them eligible for garbage collection.

By being able to ignore the sizes of a dimension, we can write methods that can handle any array of a given

number of dimensions and containing a given element type. For example, when we execute these calls:

dump1DIntArray(counts);
dump1DIntArray(newcounts);

the following method:

private static void dump1DIntArray(int[] x)

{

 if (x == null)

 {

 System.out.println("null array ref passed");

 return;

 }

 System.out.print(x.length + ": ");

 for (int i = 0; i < x.length; ++i)

 {

 System.out.print(" " + x[i]);

 }

 System.out.println();
}

produces this output:

4: 5 7 3 9
3: 6 7 3

A very powerful aspect of Java arrays is that a multidimensional array need not have the same size for each

element of a dimension. For example, we can have a two-dimensional array in which some rows have more

columns than others. (As a result, rows in a multidimensional array need not be stored in any predictable physical

order relative to each other; however, components within the same row are stored contiguously.) For example:

double[][] vv = {

 {},

 {2.6, 9.2, 3.3},

 {1.2},

 {5.6, 9.8}
};

Programming in Java

78

vv
vv[0]

vv[1]

vv[2]

vv[3]

[0] [1] [2]

5.6 9.8

1.2

2.6 9.2 3.3

System.out.println("length of vv = " + vv.length);
for (int i = 0; i < vv.length; ++i)

{

 System.out.print("length of vv[" + i + "] = " + vv[i].length + ": ");

 for (int j = 0; j < vv[i].length; ++j)

 {

 System.out.print(" " + vv[i][j]);
 }

 System.out.println();
}

As we can see from the following output, each row has a different number of columns:

length of vv = 4

length of vv[0] = 0:

length of vv[1] = 3: 2.6 9.2 3.3
length of vv[2] = 1: 1.2

length of vv[3] = 2: 5.6 9.8

In the initializer above, the allocation of memory using new is implicit. Let's look at what the compiler is really

doing here by initializing another array, called vv2, in exactly the same way as vv:

double[][] vv2 = new double[4][];

vv2[0] = new double[0];
vv2[1] = new double[3];

vv2[1][0] = 2.6;

vv2[1][1] = 9.2;

vv2[1][2] = 3.3;

vv2[2] = new double[1];

vv2[2][0] = 1.2;

vv2[3] = new double[2];

vv2[3][0] = 5.6;
vv2[3][1] = 9.8;

4. References, Strings, and Arrays

79

Unlike some languages, Java does not support partial initialization of an array with default values being applied to

the rest. In Java, the number of initializers exactly determines the number of elements.

All the examples thus far in this section have involved arrays of primitive types. Of course, Java also supports

arrays of reference types. For example:

String[] animals = {"bear", "lion", "sheep"};

animals
animals[0]

“bear”

animals[1]
“lion”

animals[2]
“sheep”

String[] words = new String[4];

words[0] = "hello";
words[1] = "goodbye";

words
words[0]

“hello”

words[1]
“goodbye”

null
words[2]

null
words[3]

System.out.println("words[0] = " + words[0]);
System.out.println("words[3] = " + words[3]);

The output produced is:

words[0] = hello
words[3] = null

When an initializer list is provided, things are quite straightforward, however, in the case of words, we are

allocating four references to strings, not four Strings themselves. For that, we need to use new on each

component of words, individually. As we can see by the output, the two components not explicitly initialized (1

and 2), take on a default value of null.

When we pass an array to a method, what we are really passing is a reference to that array, and that reference is

passed in by value. However, since the reference copy refers to the same array, changes made to elements

through the copy do change the array. For example:

Programming in Java

80

dump1DIntArray(counts);

change1DIntArray(counts);

dump1DIntArray(counts);

private static void change1DIntArray(int[] x)

{

 for (int i = 0; i < x.length; ++i)

 {

 x[i] += 10;
 }
}

The output produced is:

4: 5 7 3 9

4: 15 17 13 19

From the very first example in §1, we have been defining main as a method that takes an array of strings as an

argument. Now that we know about arrays and strings, just what is the purpose of this argument? Most systems

allow what are called command-line arguments to be passed to a program when it begins execution. The

following example simply displays all the strings passed to it at program start-up (see directory Rf09):

public class Rf09

{

 public static void main(String[] args)

 {

 for (int i = 0; i < args.length; ++i)

 {

 System.out.println("args[" + i + "] = >" + args[i] + "<");

 }

 }
}

When this program was run on one system using the following command line:

ABC abc AbC " xx " "a b c"

the output it produced was:

args[0] = >ABC<
args[1] = >abc<

args[2] = >AbC<

args[3] = > xx <
args[4] = >a b c<

4. References, Strings, and Arrays

81

args
args[0]

“ABC”

args[1]
“abc”

args[2]
“AbC”

args[3]
“ xx ”

args[4]
“a b c”

Since the behavior of command-line processors varies from one system to another, the output may vary. For

example, this system stripped off double quotes, treating them as argument delimiters, allowing leading, trailing,

and/or embedded white space to be made part of an argument. This system also preserved the case of non-

quoted arguments; others might not unless they are enclosed in quotes. Systems that use some sort of delimiter

often provide a way to include that character in an argument as well. Unlike some other languages, the name of

the program being run is not made available through the argument list.

While most programmers use args as the name of the formal parameter in main, any identifier will do; it's just a

local variable name.

Exercise 4-3: Find out how to run a program on your system so that command-line arguments can

be passed. Does your implementation preserve the casing of command-line arguments? Is white

space embedded in double (or some other form of) quotes preserved? Can the delimiter

characters be embedded inside an argument?

Exercise 4-4*: Have a program take each of its command-line arguments, pass them through the

method compressString from the previous exercise, and display the compressed String. (See

lab directory Lbrf03.)

4.7 Copying Arrays

At times, it is useful to be able to make a copy of a whole array, and since assigning one array reference to

another copies only the reference, we need some other means of actually copying the array's elements. The

following series of examples (each taken from the file Rf10.java) shows how. Let's begin by making a copy of a

one-dimensional array of int:

int[] xx1 = {5, 7, 3, 9, 4, 6};

int[] xx2 = new int[xx1.length];

System.arraycopy(xx1, 0, xx2, 0, xx1.length);

Programming in Java

82

5xx1

[0]

7

[1]

3

[2]

9

[3]

4

[4]

6

[5]

The output obtained from dump1DIntArray(xx2) is:

6: 5 7 3 9 4 6

indicating that the new array is an exact copy of the old. The method arraycopy, defined in class System, takes

five arguments. In order, these are reference to the source array, the start index of the source array, reference to

the destination array, the start index of the destination array, and the number of consecutive elements to copy.

Invalid arguments cause exceptions. For example, the source and destination must be references to arrays of one

dimension and have the same element type.

Not only can we copy one array to another, we can also copy from one part of an array to another. For example:

5xx2

[0]

7

[1]

3

[2]

9

[3]

4

[4]

6

[5]

System.arraycopy(xx2, 1, xx2, 4, 2);

5xx2

[0]

7

[1]

3

[2]

9

[3]

7

[4]

3

[5]

This results in xx2 containing the values 5, 7, 3, 9, 7, and 3. If the source and destination arrays overlap, the copy

will be done as if it an intermediate storage area were used. For example:

5xx1

[0]

7

[1]

3

[2]

9

[3]

4

[4]

6

[5]

System.arraycopy(xx1, 0, xx1, 2, 4);

5xx1

[0]

7

[1]

5

[2]

7

[3]

3

[4]

9

[5]

4. References, Strings, and Arrays

83

which results in xx2 containing the values 5, 7, 5, 7, 3, and 9.

Let's look at how we might copy a two-dimensional array of int:

int[][] yy1 = {

 {11, 53, 14},

 {25, 69, 25},

 {32, 79, 33},

 {47, 85, 90}
};

yy1
yy1[0]

yy1[1]

yy1[2]

yy1[3]

[0] [1] [2]

25 69 25

11 53 14

32 79 33

47 85 90

int[][] yy2 = new int[yy1.length][yy1[0].length];

yy2
yy2[0]

yy2[1]

yy2[2]

yy2[3]

[0] [1] [2]

0 0 0

0 0 0

0 0 0

0 0 0

for (int i = 0; i < yy1.length; ++i)

{

 System.arraycopy(yy1[i], 0, yy2[i], 0, yy1[i].length);

}

First, we must allocate room for a copy of the two-dimensional array. Then we must copy each row separately.

(In this case, each row has the same number of columns. If that were not the case, we'd have had to allocate

Programming in Java

84

memory for each row separately.) Now if we change the value of any element of yy1, those changes are not

reflected in yy2.

As we mentioned earlier, simply copying an array of references is insufficient. For example:

yy1
yy1[0]

yy1[1]

yy1[2]

yy1[3]

[0] [1] [2]

25 69 25

11 53 14

32 79 33

47 85 90

int[][] yy3 = new int[yy1.length][yy1[0].length];

yy3
yy3[0]

yy3[1]

yy3[2]

yy3[3]

[0] [1] [2]

0 0 0

0 0 0

0 0 0

0 0 0

System.arraycopy(yy1, 0, yy3, 0, yy1.length);

4. References, Strings, and Arrays

85

yy1
yy1[0]

yy1[1]

yy1[2]

yy1[3]

[0] [1] [2]

25 69 25

11 53 14

32 79 33

47 85 90

yy3[0]

yy3[1]

yy3[2]

yy3[3]

yy3

yy1[0][2] = -6;

yy1[1][1] = -7;

yy1[2][0] = -8;
yy1[3][2] = -9;

In this case, the changes made to the elements of yy1 are reflected in yy3 which when displayed contains:

11 53 -6

25 -7 25

-8 79 33
47 85 -9

As we should expect, copying an array of objects involves a bit more work than an array of primitive variables:

String[] zz1 = {"bear", "lion", "sheep"};

String[] zz2 = new String[zz1.length];
for (int i = 0; i < zz1.length; ++i)

{

 zz2[i] = new String(zz1[i]);

}

Programming in Java

86

As before, we allocate memory for an array, but this is for the array of references. Then we must allocate memory

for each string. And since we want each new string to be initialized with the corresponding element in the other

array, we pass the constructor that string's value.

If strings are read-only, why do we need to make copies of them? Couldn't we just have one array with many

references leading to it? Yes, we can, but it depends on what we are doing with the array that determines which

approach we take. For example:

String[] zz1 = {"bear", "lion", "sheep"};

String[] zz3 = zz1;

String[] zz4 = new String[zz1.length];
System.arraycopy(zz1, 0, zz4, 0, zz1.length);

zz3 simply refers to the same array as zz1; however, zz4 refers to another array that has the same contents as

the first. Note carefully that we have copied an array of references here, not the actual strings themselves;

however, there is no need to copy the strings since they are read-only, and we can share them with other

references. Consider what happens when we change an element of zz1:

zz1[0] = "parrot";
System.out.println("zz3[0] = " + zz3[0]);

System.out.println("zz4[0] = " + zz4[0]);

The output produced is:

zz3[0] = parrot
zz4[0] = bear

In the case of the second reference to the same array, the change is reflected whereas in the case of the second

copy, it is not.

zz1 = null;
System.out.println("zz3[2] = " + zz3[2]);
System.out.println("zz4[2] = " + zz4[2]);

The output produced is:

zz3[2] = sheep
zz4[2] = sheep

In this case, when zz1 is set to the null reference, the reference count to the array it was referring to, is

decremented. However, zz3 still refers to that array so its contents are still available.

One final, but important, note about arrays; as well as declaring a primitive to be final we can also declare an

array reference to be final. However, a final reference to an array says nothing about the finality of the

elements of the array being referenced. In fact, Java provides no way to write-protect these elements. For

example:

private final static int[] values = {10, 30, 50, 34};

values = new int[5]; // prohibited
values[2] = 0; // allowed

4. References, Strings, and Arrays

87

Exercise 4-5*: Write a method that performs a circular rotation of the elements in a one-

dimensional array of int. For example, if an array contains the following elements:

1 2 3 4 5 6

before rotation, after it has been rotated right by two positions it contains the following elements

instead:

5 6 1 2 3 4

The method is declared as static void rotate(int[] a, int count). If count is

positive, the rotation is to the right with right-hand values wrapping to the left. If count is

negative, the rotation is to the left with left-hand values wrapping to the right. Of course, a

rotation of zero has no effect. Handle counts greater than the array length by using modulo

arithmetic. For example, a count of 10 for an array of 8 is really a count of 2. Correctly handle an

array containing zero elements. How can such an array be created? Test your method. (See lab

directory Lbrf04.)

Exercise 4-6*: Implement a method called createArray that takes two arguments, an integer

count and a string. This method creates and initializes a two-dimensional array of strings having

count rows, in which the first row has 1 element, the second has 2, and so on. All elements

contain the string passed in. For example, the call createArray(3, "XY") results in an array

that looks like the following:

 0 1 2

0 XY

1 XY XY

2 XY XY XY

Return this array to main and have main pass it to another method, printArray, which displays

its elements, one row per line. (See lab directory Lbrf05.)

4.8 Variable-Length Argument Lists

Starting with JDK1.5, a method can be defined to have a fixed number of (zero or more) arguments, followed by a

variable number of arguments. Consider the following example (see directory Rf16), that computes and returns

the maximum value of a set of values passed to it and displays the result. The FindMaximum method has no fixed

argument list, only a variable one:

Programming in Java

88

public class Rf16

{

 public static void main(String[] args)

 {

/*1*/ double max = FindMaximum(new double[] {3.4, 5.3, -3.4});

 System.out.println("Maximum = " + max);

/*2*/ max = FindMaximum(139.21, 10.5, 100.2, 121.54, -156.32);

 System.out.println("Maximum = " + max);
 }

/*3*/ private static double FindMaximum(double ... args)

 {

 double maximumValue = Double.MIN_VALUE;

 for (double d : args)

 {

 if (d > maximumValue)

 {

 maximumValue = d;

 }
 }

 return maximumValue;

 }
}

The output produced is:

Maximum = 5.3
Maximum = 139.21

In case 3, we define FindMaximum to have a variable-length argument list by using the punctuator ... after the

type of the final (in this case the only) parameter. This tells the compiler to accept a single argument that is an

array of objects of that parameter's type, or a comma-separated list of separate arguments each having that type

(or a type derived from that type). In the latter case, the list of separate values is arranged by the compiler into an

array, which is then passed in. So, either way, the method is given an array for the final parameter.

We have seen examples of calls to the PrintStream method printf. Clearly, this method can take an arbitrary

number of arguments having arbitrary type. It achieves this by having the following declaration:

printf(String format, Object ... args)

As we will learn in §6.10, all reference types are derived from type System.Object, and all primitive types can

be implicitly converted to that type. As such, type Object is the "one type that fits all!"

4.9 Primitive Wrapper Classes

One disadvantage of new is that it cannot be used to allocate a single variable of a primitive type. Also, numerous

library container classes (such as Stack and Vector) can only operate on objects, not on primitive variables. To

get around these shortcomings, the standard library comes with a family of classes that parallels the primitive

4. References, Strings, and Arrays

89

types. These classes are sometimes called primitive wrappers because an object of a wrapper class type simply

contains a variable of the corresponding primitive type. Here is a list of the wrapper types:

Table 4-1: Primitive Wrappers

Class Primitive

Type

Boolean boolean

Character char

Byte byte

Short short

Integer int

Long long

Float float

Double double

The following example (see directory Rf11) demonstrates some of the methods these classes provide:

Boolean b1 = new Boolean(true);

b1 true

Boolean b2 = new Boolean("no way");

Boolean b3 = new Boolean("True");

System.out.println("b1.booleanValue = " + b1.booleanValue());

System.out.println("b2.booleanValue = " + b2.toString());
System.out.println("b3.booleanValue = " + b3);

The output produced is:

b1.booleanValue = true

b2.booleanValue = false
b3.booleanValue = true

Each wrapper class provides at least two constructors: One takes a primitive-typed argument of the

corresponding type, as in Boolean(boolean b), Character(char c), Integer(int i), and

Double(double d); the other takes a string. In the case of Boolean(String s), s is interpreted as being

Programming in Java

90

true only if it contains the string `true' spelled without concern for case. As shown by the output produced, "no

way" indicates false while "True" is seen as true.

Each wrapper class also provides a method of the form typeValue(), as in booleanValue(), charValue(),

intValue(), and floatValue(). These methods simply return the value of the primitive variable contained in

the wrapper object.

Let's consider each of the three expressions used in the println calls above: b1.booleanValue()produces a

boolean value and when the compiler sees that that value needs to be concatenated with a string, it implicitly

generates a call to the toString method (which all wrapper classes also define) concatenating the resulting

string. In the second case, b2.toString() returns a string containing the internal value directly and

concatenates that. Finally, b3 results in an implicit call to toString.

Each wrapper class also defines an equals method that does the obvious thing:

System.out.println("b3.equals(b2) = " + b3.equals(b2));

System.out.println("b3.equals(b1) = " + b3.equals(b1));

The output produced is:

b3.equals(b2) = false
b3.equals(b1) = true

In the numeric wrapper classes, the constructor taking a string expects that string to contain the text

representation of a value of the given numeric type, however, no leading or trailing white space is permitted:

int i = 12345;
Integer i1 = new Integer(i);

i1 12345

System.out.println("i1 = " + i1);

System.out.println("i1 = " + i1.intValue());

Integer i2 = new Integer("4567");
System.out.println("i2 = " + i2);

The output produced is:

i1 = 12345

i1 = 12345

i2 = 4567

The code continues:

Float f1 = new Float(123.45);

f1 123.45F

4. References, Strings, and Arrays

91

System.out.println("f1 = " + f1);

System.out.println("f1 = " + f1.floatValue());

Float f2 = new Float("987.654e13");
System.out.println("f2 = " + f2);

The output produced is:

f1 = 123.45

f1 = 123.45
f2 = 9.87654e+015

Earlier, it was stated that new cannot allocate memory for a single primitive variable. Strictly speaking, that's true;

however, we can achieve the same effect by allocating memory for an array of 1 element. Since an array of any

size (including 1) is handled using references, we can allocate a single variable. However, doing so requires us to

use subscript notation from that point on, and that makes the code far less intuitive.

Starting with JDK1.5, Java permits the value of any primitive-type expression to be converted implicitly to its

corresponding wrapper type. This process is called boxing. The resulting reference-type expression can be

converted back again implicitly in a process known as unboxing. This makes it easier to deal with primitive-type

values in a reference type context. For more information, see §6.13.

Exercise 4-7*: Write a program that accepts an arbitrary number of command-line arguments,

each of which is an integer or floating-point value, and displays the sum of all these values. (See

lab directory Lbrf06.)

Exercise 4-8: Look at the documentation for the wrapper classes to see the complete list of

methods they provide. (Note that new methods were added with both JDK1.1 and JDK1.2/Java 2.)

4.10 Modifiable Strings

For many situations, Strings work just fine, however, sometimes it would be nice to be able to change the length

and/or contents of a String without allocating a new one. (In fact, we cannot pass a String to a method and expect

that method to change that string. While that method can change its copy of the reference to refer to a new

String, it has no way of getting the original reference to refer to that new string.) While these operations are not

permitted on objects of class String, they are permitted on objects of class StringBuffer. A StringBuffer can

have its contents changed and it can shrink and grow on demand.

The following examples (see directory Rf12) introduce the operations permitted on StringBuffers:

StringBuffer sb1 = new StringBuffer();

System.out.println("sb1.capacity = " + sb1.capacity());

System.out.println("sb1.length = " + sb1.length());

The output produced is:

sb1.capacity = 16
sb1.length = 0

The constructor with no arguments causes a StringBuffer to be allocated that contains an empty character

sequence. However, space is allocated for 16 characters by default. Each StringBuffer has a capacity and a current

Programming in Java

92

used length, which is always less than or equal to its capacity. As a StringBuffer grows, its capacity is expanded

automatically as necessary.

StringBuffer sb2 = new StringBuffer(22);

System.out.println("sb2.capacity = " + sb2.capacity());
System.out.println("sb2.length = " + sb2.length());

The output produced is:

sb2.capacity = 22
sb2.length = 0

In this case, sb2 is still empty but its allocated size is 22 characters.

StringBuffer sb3 = new StringBuffer("Hello");
System.out.println("sb3.capacity = " + sb3.capacity());

System.out.println("sb3.length = " + sb3.length());

The output produced is:

sb3.capacity = 21

sb3.length = 5

When a StringBuffer is constructed from a String, the allocation size is 16 more than the length of the String.

sb3.setCharAt(2, 'X');

sb3.setLength(10);

System.out.println((int)sb3.charAt(8));

sb3.setLength(3);
System.out.println("sb3 = " + sb3);

The output produced is:

0
sb3 = HeX

The setCharAt method allows the character with the given index to be set to the value specified. setLength

can be used to extend the StringBuffer's length—in this case from 5 to 10—and the newly added characters each

contain the value \u0000. This method can also be used to shorten the length, as shown, by truncating the

StringBuffer. (Method ensureCapacity is used to ensure that the capacity of the StringBuffer is at least the size

requested.)

sb1.append("Begin");

String s1 = sb1.toString();

System.out.println("s1 = " + s1);
sb1.append(true);

String s2 = sb1.toString();

System.out.println("s1 = " + s1);
System.out.println("s2 = " + s2);

4. References, Strings, and Arrays

93

The output produced is:

s1 = Begin

s1 = Begin
s2 = Begintrue

We can add extra characters to the end of a StringBuffer using append, whose argument can be any primitive

type or String. At any time, we can take a snapshot copy and store it in a String, by calling toString.

sb1.append(1234);

sb1.append(4.56);
System.out.println("sb1 = " + sb1);

System.out.println("sb1.capacity = " + sb1.capacity());

System.out.println("sb1.length = " + sb1.length());

The output produced is:

sb1 = Begintrue12344.56

sb1.capacity = 34

sb1.length = 17

We can add extra characters at the front or middle of the StringBuffer using insert:

sb1.insert(0, 'X');
sb1.insert(6, false);

System.out.println("sb1 = " + sb1);

System.out.println("sb1.capacity = " + sb1.capacity());
System.out.println("sb1.length = " + sb1.length());

The output produced is:

sb1 = XBeginfalsetrue12344.56

sb1.capacity = 34
sb1.length = 23

The reverse method reverses the StringBuffer, in place:

sb1.reverse();

System.out.println("sb1 = " + sb1);

The output produced is:

sb1 = 65.44321eurteslafnigeBX

The String class has a constructor that takes a StringBuffer. That along with the toString method in class

StringBuffer, allows us to convert either form of string object to the other:

String s3 = new String(sb1);
System.out.println("s3 = " + s3);

The output produced is:

s3 = 65.44321eurteslafnigeBX

Programming in Java

94

Exercise 4-9: Look at the documentation for the classes String and StringBuffer to see the

complete list of methods they provide.

Exercise 4-10*: Without changing its signature, re-implement compressString such that it

preallocates a StringBuffer rather than using string concatenation. (See lab directory Lbrf07.)

4.11 Static Initialization Blocks

We have seen that static variables can be initialized using non-constant expressions; however, sometimes they

need to be initialized in such a way that cannot be expressed in a single expression. For example, how can we

initialize a static array of primitives or objects? Here's an example (see directory Rf14):

public class InventoryData

{

/*1*/ private static final int[] monthlyTotal = new int[12];

/*2*/ private static final int AVERAGE_MONTHLY_TOTAL;

/*3*/ static {

 int total = 0;

 for (int i = 0; i < monthlyTotal.length; ++i)

 {

 // initialize monthlyTotal[i] some how

 total += monthlyTotal[i];

 }

/*4*/ AVERAGE_MONTHLY_TOTAL = total/monthlyTotal.length;

 }

 public static void display()

 {

 // …

 }
}

The initializer in case 1 allocates the memory for the array, each of whose elements takes on the default value,

zero. Since the actual initial values must be obtained at runtime (by reading a file, for example), we need some

way to achieve that without our having to remember to call some initialization method once and only once. We

do this in case 3 by using what is called a static initialization block. Such a block can contain local variable

definitions and executable statements just like a method. Multiple static initialization blocks are permitted and

along with the static field member initializers, they are executed in their order of appearance in the source file.

In JDK1.0, a class variable could only be declared final if it contained an initializer; however, that restriction was

lifted in JDK1.1, allowing such a variable to be initialized by some other means at runtime.

In case 1, if the number of monthly totals were not known in advance, we could omit the initializer expression

altogether and allocate the memory for the array inside the static initializer block once that number was known.

5. Classes

95

5. Classes

Classes are the key foundation stone of object-oriented programming. By using classes, we can take advantage of

encapsulation, data hiding, inheritance, and polymorphism, the first two of which are discussed in this chapter.

5.1 Introduction

Until now, we have used the keyword class primarily as a means for namespace control; however, now we'll see

how to exploit its full potential. We'll do this by showing how we can define our own object types.

So far, we've been creating variables of primitive types, arrays of those types, and strings. And while we can do

useful programming with these types, eventually we'll need more complex and sophisticated data types. For

example, in a personnel system, we might want an Employee type, containing employee name, address, date of

birth, veteran status, and other descriptive information. In a library catalog system, we'll probably want to keep

track of each book's call number, author, title, year of publication, and the like, in some kind of a Publication type.

Neither of these types can be accommodated directly by the types we have seen.

Throughout this and future sections, we'll use Point as our user-defined type. A Point represents a location in a

two-dimensional plane. This simple type is something with which we can easily relate, and it serves nicely to

introduce the class support machinery. Even if you don't write graphics programs, it should be very easy to

extrapolate from the principles learned here.

Let's define our new Point type, and create and manipulate a number of objects of that type (see directory Cl01):

public class Point

{

// instance variables

/*1*/ public int x;

/*2*/ public int y;

}

The first thing to notice is that in cases 1 and 2, the keyword static has been omitted. Back in §1.10, we learned

that variables defined inside a class (rather than inside a method) and having the modifier static, are class

variables; that is, they are variables belonging to the class as a whole. What we now have is a pair of instance

variables, called x and y. We can create an arbitrary number of Point objects each of which contains an x- and y-

coordinate pair; that is, each instance of class Point contains a unique pair of instance variables, since each Point's

representation is separate from those of all other Points, even for Points that happen to have the same

coordinate values.

Programming in Java

96

public class Cl01

{

 public static void main(String[] args)

 {

/*3*/ Point p1 = new Point();

/*4*/ System.out.println("p1 = (" + p1.x + "," + p1.y + ")");

/*5*/ p1.x = 5;

/*6*/ p1.y = 7;
 System.out.println("p1 = (" + p1.x + "," + p1.y + ")");

/*7*/ Point p2 = new Point();

/*8*/ p2.x += -4;

/*9*/ p2.y += 12;
 System.out.println("p2 = (" + p2.x + "," + p2.y + ")");

 }

}

In case 3, we allocate memory for a Point using new, just like we did for strings in §4.1. Creating an instance of a

class is known as instantiation. By default, all instance variables take on a zero, false, or null value, depending on

their type. Like strings and Points, all objects of user-defined types must be allocated on the heap using new. To

access the instance variables, we simply prefix their names with the name of their parent, as in case 4. Note that

this is different to the way in which we have been accessing class variables, which use the parent class name as

their prefix. A class can have both class and instance variables, as we'll see later; in fact, many of the library

classes do.

It is useful to be able to change the coordinates of a Point after it has been created. This operation is often

referred to as moving the Point and is done in cases 5 and 6. In case 7, we define a second Point and we translate

that Point in cases 8 and 9. (Translation involves moving by an offset rather than to an absolute new location.)

The output produced by this program is:

p1 = (0,0)

p1 = (5,7)
p2 = (-4,12)

When we have a general-purpose class such as Point, we very quickly realize that it makes no sense to define

our application program as a method within that class. After all, we likely will write many programs that use this

class and we can't define all our programs inside that class. In any event, we can only have one method called

main having some given signature. As a result, not only do we need to define our application and Point in

different classes, these classes need to be in separate source files.

When defining user-defined types, it is customary to precede the keyword class with the keyword public.

While this is permitted, it is not necessary. We'll discuss this further in §8.2; however, for now, suffice it to say

that if you declare a class to be public, it must be contained in a source file whose name is exactly the same as

that class, case included.

5. Classes

97

5.2 Class-Specific Methods

It is tedious to write out the steps to move, translate, and display a Point each time. Also, given the way Point

has been defined, every application relies on the fact that a Point contains an x- and a y-coordinate of type int,

called x and y, respectively. Therefore, any change in the way that type is represented will negatively affect those

applications. By making the instance variable private and adding some public methods to class Point, we can

deal with it in a more abstract manner. Now the Point class looks like the following (See directory Cl04):

public class Point

{

// instance variables

 private int x;

 private int y;

// constructors

 public Point(int xor, int yor)

 {

 x = xor;

 y = yor;

 }

 public Point()

 {

 x = 0;

 y = 0;
 }

By making the instance variables private they can only be accessed by methods within their parent class. This is

known as data hiding, since we hide the representation details of Point from all programs that use it.

The main reason for data hiding is to cater for unanticipated changes. Since we can never say the representation

of an object won't change and we can never say exactly how it might or will change, we should cater for as much

flexibility as possible. That is, assume everything within reason will change.

In the program above, we also see an example of encapsulation, the process by which we associate variables and

methods by defining them in the same class. This allows us to control the access to those variables and methods.

The methods called Point are special. Strictly speaking, they are not really methods but rather, constructors;

however, for all practical purposes, they look like methods—they just have a special name. From this, we can

deduce that, syntactically, a constructor is nothing more than a method that has the same name as its parent

class. The first constructor expects two int arguments, which represent the x- and y-coordinates, respectively,

and it initializes the private fields using those values. A constructor cannot have a return type declared, not even

void. It can contain one or more return statements, however, provided they do not contain an expression.

We have already seen examples of overloaded methods within a class, so it should come as no surprise that we

can overload constructors. In this example, we provide a second constructor, which takes no arguments and

creates the new Point at the origin.

Like variables, methods not having the static modifier are instance methods, so they can only be called to

operate on an instance of their parent class:

Programming in Java

98

// instance methods

 public void move(int xor, int yor) // called using p.move(1, -4)

 {

 x = xor;

 y = yor;

 }

 public void translate(int xor, int yor) // called using p.translate(2, 3)

 {
 x += xor;

 y += yor;

 }

 public boolean equals(Point p) // called using p1.equals(p2)

 {
 if (p == null)

 {

 return false;

 }

 return (x == p.x) && (y == p.y);

 }

 public String toString()

 {

 return "(" + x + "," + y + ")";

 }

}

The methods move and translate are self-explanatory. Note the test for null in equals; without this,

attempting to select the x or y member in the Point referred to by p when no Point exists, will cause an exception

to be thrown. As we can see, the method toString creates a string containing a printable representation of a

Point. We have already seen that numerous library classes contain a method by this name and they perform the

same function for their parent class. According to the formal description of toString, this method "creates a

string representation of the object. In general, the toString method returns a string that ‘textually represents’

this object. The result should be a concise but informative representation that is easy for a person to read".

Note that the ordering of the definitions of the constructors and methods is arbitrary since the scope of a class

member is the whole class, allowing forward references to constructors and methods.

Also, note that none of the constructors or methods is static, since each will be called to operate on a specific

Point rather than on the class as a whole.

5. Classes

99

Now let's use these new constructors and methods:

public class Cl04

{

 public static void main(String[] args)

 {

/*1*/ Point p1 = new Point();

/*2*/ System.out.println("p1 = " + p1);

/*3*/ p1.move(5, 7);

 System.out.println("p1 = " + p1);

/*4*/ Point p2 = new Point(9, 1);

/*5*/ p2.translate(-4, 12);
 System.out.println("p2 = " + p2);

/*6*/ System.out.println("p1 equals p2 = " + p1.equals(p2));

/*7*/ System.out.println("p1 equals Point(5,7) = "

 + p1.equals(new Point(5, 7)));

 }
}

In case 1, we create a Point using the constructor that takes no arguments. This uses the same syntax and has the

same effect as the previous example in which we had no constructor defined. If no constructor is defined for a

class, the compiler defines a default constructor, which initializes all of the instance variables to zero or null,

depending on their type. However, once we provide a constructor with one or more arguments, the compiler will

no longer automatically define one with no arguments, so we have defined one explicitly.

In case 2, we display the value of a Point using the same notation as we have for displaying the value of primitive

variables. And, no surprise, the same process is being performed; the compiler creates a string from the value of

the argument. In the case of an object, it calls the toString method for that class. So, we see then that a

method by this name has a predefined meaning and it's called as necessary.

We call the move method for Point p1 in case 3, then we create a Point using the constructor that takes two

arguments, in case 4, and then translate that Point in case 5. Each time an instance method such as move and

translate is called, it operates on the object for which it was called. For example, p1.move(5, 7) moves the

location of Point p1 and p2.translate(-4, 12) translates the location of Point p2.

As we have seen in earlier examples, a number of library classes contain a method called equals, which

compares two objects for equality, so we provide a version for class Point.1 By definition, two Points are equal if

they represent the same location. Case 7 is much like case 6 except that one of the Points being used is created

"on the fly", as an unnamed temporary.

1 While this version suffices for now, we'll show an alternate approach in §6.11.

Programming in Java

100

The output produced by this program is:

p1 = (0,0)

p1 = (5,7)

p2 = (5,13)

p1 equals p2 = false
p1 equals Point(5,7) = true

When a class has multiple constructors, it is not uncommon for one of them to be defined in terms of another. For

example, the constructor of the Point class taking no arguments can easily be turned into a call to the constructor

taking two, as follows:

public Point(int xor, int yor)

{

 x = xor;

 y = yor;
}

public Point()

{

 this(0, 0); // call sibling constructor
}

We can invoke another constructor simply by using the notation this(arg-list), where arg-list is an argument list

whose number and argument types correspond to the signature for some other constructor for the same class. If

present, such a call must be the first statement of the constructor. When the called constructor terminates, it

returns to its caller, so we can have statements following such a call.

Exercise 5-1*: In §3.5, we implemented a crude model of a Circle along with a pair of methods

called initCircle and printCircle (see labs directories Lbme02a and Lbme02b). Take one of

these solutions and turn it into two separate files, one of which defines and implements a class

called Circle, the other containing an application program that defines and initializes four Circle

objects and displays their contents. Specifically, based on the four initCircle methods, create

a set of constructors, and based on printCircle, create a version of toString. (See lab

directory Lbcl04.)

5.3 Data Hiding within a Class

In all the methods we added to class Point above, we access the private fields directly by name. As such, any

changes to the way in which they are represented can affect some, if not all, methods in that class. And there is

no limit on the number of methods a class can have. If we agree that it makes sense to hide implementation

details from methods outside a class, why not also protect them from most of the methods inside the class as

well? Then, not only can changing a class's internal representation have no impact on existing programs that use

that class, it can also have almost no impact on the methods in that class.

If class methods access private fields only indirectly, we can make the class immune to changes in the way in

which the private fields are represented. We can provide indirect access to a private field's value via what is

commonly called an accessor, a method whose name is of the form getAttribute. To provide indirect access to

change a private field's value we use a mutator, a method whose name is of the form setAttribute.

	Preface
	Java's Design Goals
	Reader Assumptions
	Limitations
	Source Code, Exercises, and Solutions
	The Java Development Kit
	Acknowledgments

	1. The Basics
	1.1 Basic Program Structure
	1.2 Java's Compilation Model
	1.3 Identifiers
	1.4 Introduction to Formatted Output
	1.5 The Primitive Data Types
	1.5.1 The boolean Type
	1.5.2 The Integer Types
	1.5.3 The Floating-Point Types

	1.6 Literals
	1.6.1 Boolean Literals
	1.6.2 Character Literals
	1.6.3 String Literals
	1.6.4 Integer Literals
	1.6.5 Floating-Point Literals

	1.7 Enum Types
	1.8 Operator Precedence
	1.9 Type Conversion
	1.10 Introduction to Class Members

	2. Looping and Branching
	2.1 The while Statement
	2.2 The for Statement
	2.3 The for each Statement
	2.4 The do/while Statement
	2.5 The if/else Statement
	2.6 The break Statement
	2.7 The continue Statement
	2.8 The Null Statement
	2.9 The switch Statement

	3. Methods
	3.1 Introduction
	3.2 Passing Arguments
	3.3 Recursion
	3.4 Argument Type Matching
	3.5 Overloaded Methods
	3.6 Variable-Length Argument Lists
	3.7 Generic Methods
	3.8 Lambdas

	4. References, Strings, and Arrays
	4.1 Introduction
	4.2 Sharing of Like Strings
	4.3 Passing and Returning References
	4.4 Allocating Memory for Objects
	4.5 Releasing Allocated Memory
	4.6 Arrays
	4.7 Copying Arrays
	4.8 Variable-Length Argument Lists
	4.9 Primitive Wrapper Classes
	4.10 Modifiable Strings
	4.11 Static Initialization Blocks

	5. Classes
	5.1 Introduction
	5.2 Class-Specific Methods
	5.3 Data Hiding within a Class
	5.4 this and That
	5.5 Static Fields and Methods Revisited
	5.6 Enumerated Types
	5.7 Containment
	5.8 Copying Objects
	5.9 Instance Initialization Blocks
	5.10 Inner Classes
	5.10.1 Introduction
	5.10.2 Static/Top-Level Classes
	5.10.3 Inner Classes
	5.10.4 Local Classes
	5.10.5 Anonymous Classes

	6. Inheritance
	6.1 Introduction
	6.2 The Is-A versus Has-A Test
	6.3 Taking Advantage of Existing Classes
	6.4 A Simple Class Hierarchy
	6.5 Abstract Classes and Methods
	6.6 Constructor Calls
	6.7 Protected Members
	6.8 Disabling Inheritance
	6.9 Disabling Overriding
	6.10 A Universal Base Class
	6.11 Run-Time Type Checking
	6.12 Enums and Inheritance
	6.13 Boxing and Unboxing
	6.14 Inheritance after the Fact
	6.15 Interfaces
	6.16 Generic Methods and Types

	7. Exception Handling
	7.1 Introduction
	7.2 Catching Exceptions
	7.3 Throwing Exceptions
	7.4 Handling Families of Exception Types
	7.5 Catching Unexpected Exceptions
	7.6 Try with Resources
	7.7 A Final Note

	8. Packages
	8.1 Introduction
	8.2 Public Classes and Package-Private Members
	8.3 Standard Library Packages
	8.4 Creating Packages
	8.5 Package Naming Conventions

	9. Input and Output
	9.1 Introduction
	9.2 The Basic I/O Classes
	9.3 File I/O
	9.4 Array I/O
	9.5 String I/O
	9.6 Typed Unformatted I/O
	9.7 Formatted I/O
	9.8 Filters
	9.9 Random Access I/O
	9.10 File and Directory Operations
	9.11 Miscellaneous Issues

	Annex A. Operator Precedence
	Annex B. Java Language Keywords
	Annex C. The Program Build Process
	C.1 Compilation
	C.2 Execution
	C.3 Class File Location
	C.4 Miscellaneous Issues

	Annex D. Formatting and Parsing
	D.1 Formatting Numbers
	D.2 Parsing Numbers
	D.3 printf Format Specifiers
	D.3.1 Argument Index
	D.3.2 Flags
	D.3.3 Width
	D.3.4 Precision
	D.3.5 Specifiers

	Index

